Internal solitary and cnoidal waves of moderate amplitude in a two-layer fluid: the extended KdV equation approximation

被引:0
作者
Sidorovas, Nerijus [1 ]
Tseluiko, Dmitri [1 ]
Choi, Wooyoung [2 ]
Khusnutdinova, Karima [1 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Internal wave; Extended kdV equation; Solitary wave; Cnoidal wave; LONG NONLINEAR-WAVES;
D O I
10.1016/j.physd.2025.134723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider travelling internal waves in a two-layer fluid with linear shear currents from the viewpoint of the extended Korteweg-de Vries (eKdV) equation derived from a strongly-nonlinear long-wave model. Using an asymptotic Kodama-Fokas-Liu near-identity transformation, we map the eKdV equation to the Gardner equation. This improved Gardner equation has a different cubic nonlinearity coefficient and an additional transport term compared to the frequently used truncated Gardner equation. We then construct approximate solitary and cnoidal wave solutions of the eKdV equation using this mapping and test validity and performance of these approximations, as well as performance of the truncated and improved Gardner and eKdV equations, by comparison with direct numerical simulations of the strongly-nonlinear two-layer long-wave parent system in the absence of currents.
引用
收藏
页数:19
相关论文
共 39 条
[11]  
[Гиниятуллин Айрат Рафаэлевич Giniyatullin A.R.], 2014, [Фундаментальная и прикладная гидрофизика, Fundamental'naya i prikladnaya gidrofizika], V7, P16
[12]  
GRIMSHAW R, 1981, STUD APPL MATH, V65, P159
[13]  
Grimshaw R, 2002, TOP ENV FLU MECH, V3, P1
[14]   Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface [J].
Grimshaw, R ;
Pelinovsky, E ;
Poloukhina, O .
NONLINEAR PROCESSES IN GEOPHYSICS, 2002, 9 (3-4) :221-235
[15]   Solitary wave transformation in a medium with si,on-variable quadratic nonlinearity and cubic nonlinearity [J].
Grimshaw, R ;
Pelinovsky, E ;
Talipova, T .
PHYSICA D, 1999, 132 (1-2) :40-62
[16]   Long nonlinear internal waves [J].
Helfrich, KR ;
Melville, WK .
ANNUAL REVIEW OF FLUID MECHANICS, 2006, 38 :395-425
[17]   Undular bores generated by fracture [J].
Hooper, C. G. ;
Ruiz, P. D. ;
Huntley, J. M. ;
Khusnutdinova, K. R. .
PHYSICAL REVIEW E, 2021, 104 (04)
[18]   Extended shallow water wave equations [J].
Horikis, Theodoros P. ;
Frantzeskakis, Dimitrios J. ;
Smyth, Noel F. .
WAVE MOTION, 2022, 112
[19]   Higher-dimensional extended shallow water equations and resonant soliton radiation [J].
Horikis, Theodoros P. ;
Frantzeskakis, Dimitrios J. ;
Marchant, Timothy R. ;
Smyth, Noel F. .
PHYSICAL REVIEW FLUIDS, 2021, 6 (10)
[20]  
Jo TC, 2008, STUD APPL MATH, V120, P65