Machine learning Algorithm for Non-invasive Blood Pressure Estimation Using PPG Signals

被引:5
作者
Zhang, Gengjia [1 ]
Shin, Siho [1 ]
Jung, Jaehyo [1 ]
Li, Meina [2 ]
Kim, Youn Tae [1 ]
机构
[1] Chosun Univ, Dept IT Fus Technol, AI Healthcare Res Ctr, 309 Pilmun Daero, Gwangju 61452, South Korea
[2] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
来源
2022 IEEE FIFTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING, AIKE | 2022年
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Blood Pressure; Photoplethysmography; Gradient Boosting Regressor; Cuffless; Machine learning;
D O I
10.1109/AIKE55402.2022.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose a blood pressure estimation algorithm that employs a gradient boosting regressor. A Photoplethysmography obtained from the MIMIC II database is uniformly divided to accurately estimate blood pressure. Blood pressure is estimated by extracting the features from these data. The performance of the algorithm is evaluated by analyzing R-2, MSE, MAE, and time. The MSE of SBP is 7.07 mmHg, MAE is 4.33 mmHg, and R-2 is 0.58. In addition, the MSE of the DBP is 4.18 mmHg, MAE is 2.54 mmHg, and the R-2 is 0.87. This study confirmed the possibility of developing an algorithm that can accurately estimate blood pressure.
引用
收藏
页码:94 / 97
页数:4
相关论文
共 16 条
[1]   From Wearable Sensors to Smart Implants-Toward Pervasive and Personalized Healthcare [J].
Andreu-Perez, Javier ;
Leff, Daniel R. ;
Ip, H. M. D. ;
Yang, Guang-Zhong .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (12) :2750-2762
[2]  
[Anonymous], More than 700 million people with untreated hypertension
[3]  
[Anonymous], HYPERTENSION
[4]  
Bradley JG, 2003, AM FAM PHYSICIAN, V68, P2393
[5]   Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes [J].
Flint, Alexander C. ;
Conell, Carol ;
Ren, Xiushui ;
Banki, Nader M. ;
Chan, Sheila L. ;
Rao, Vivek A. ;
Melles, Ronald B. ;
Bhatt, Deepak L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (03) :243-251
[6]  
Kachuee M, 2015, IEEE INT SYMP CIRC S, P1006, DOI 10.1109/ISCAS.2015.7168806
[7]   Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring [J].
Kachuee, Mohammad ;
Kiani, Mohammad Mahdi ;
Mohammadzade, Hoda ;
Shabany, Mahdi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (04) :859-869
[8]   Comparison of Different Machine Learning Techniques for the Cuffless Estimation of Blood Pressure using PPG Signals [J].
Kilickaya, Sertac ;
Guner, Aytug ;
Dal, Baris .
2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, :319-324
[9]  
Kurylyak Y, 2013, IEEE IMTC P, P280
[10]   NeuroKit2: A Python']Python toolbox for neurophysiological signal processing [J].
Makowski, Dominique ;
Pham, Tam ;
Lau, Zen J. ;
Brammer, Jan C. ;
Lespinasse, Francois ;
Pham, Hung ;
Schoelzel, Christopher ;
Chen, S. H. Annabel .
BEHAVIOR RESEARCH METHODS, 2021, 53 (04) :1689-1696