Parameter identification and vibration suppression for Flexible Aircraft Wings based on Support Vector Machine

被引:0
作者
Ma, Xinyang [1 ]
Liu, Yiwen [2 ]
Wang, Guidong [3 ]
Liu, Jinkun [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
[2] Qingdao Social Credit Ctr, Qingdao Econ Dev Res Inst, Beijing, Qinghai, Peoples R China
[3] China Acad Aerosp Aerodynam, Beijing, Qinghai, Peoples R China
来源
PROCEEDINGS OF THE 36TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Flexible Aircraft Wings; Support vector machine; The sudden change of load; Parameter identification; Boundary control; Vibration suppression; NEURAL-NETWORK CONTROL; SYSTEMS;
D O I
10.1109/CCDC62350.2024.10588254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the control challenges of flexible aircraft wings through parameter identification. The Disturbances affecting flexible aircraft wings are commonly assumed to be random, making it difficult to satisfy the necessary statistical assumptions. Thus, we propose a parameter identification approach against specific parameters of aircraft wings based on a support vector machine (SVM) to rddress this situation. To suppress the elastic deformation of the flexible aircraft wings, a boundary control scheme based on a radial basis function (RBF) neural network is proposed based on the identification results. Finally, two simulation examples are provided to validate the effectiveness of the parameter identification method and the boundary controller respectively.
引用
收藏
页码:1375 / 1382
页数:8
相关论文
共 28 条
[1]   Impulse Response Constrained LS-SVM modeling for Hammerstein System Identification [J].
Castro-Garcia, Ricardo ;
Agudelo, Oscar Mauricio ;
Suykens, Johan A. K. .
IFAC PAPERSONLINE, 2017, 50 (01) :14046-14051
[2]   Nonlinear PDE control of two-link flexible arm with nonuniform cross section [J].
Dogan, Mustafa ;
Morgul, Omer .
2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 :400-+
[3]   High fidelity computational simulation of a membrane wing airfoil [J].
Gordnier, R. E. .
JOURNAL OF FLUIDS AND STRUCTURES, 2009, 25 (05) :897-917
[4]  
Guang O, 2013, CHIN CONTR CONF, P1686
[5]   Effects of wing flexibility on aerodynamic performance of an aircraft model [J].
Guo, Qinfeng ;
He, Xi ;
Wang, Zhuo ;
Wang, Jinjun .
CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (09) :133-142
[6]  
Hastings G. G., 1987, IEEE Control Systems Magazine, V7, P61, DOI 10.1109/MCS.1987.1105233
[7]   Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer [J].
He, Wei ;
Yan, Zichen ;
Sun, Changyin ;
Chen, Yunan .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (10) :3452-3465
[8]   Flexible-Membrane Airfoils at Low Reynolds Numbers [J].
Hu, Hui ;
Tamai, Masatoshi ;
Murphy, Jeffery T. .
JOURNAL OF AIRCRAFT, 2008, 45 (05) :1767-1778
[9]   NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY [J].
HUNT, KJ ;
SBARBARO, D ;
ZBIKOWSKI, R ;
GAWTHROP, PJ .
AUTOMATICA, 1992, 28 (06) :1083-1112
[10]   Membrane wing aerodynamics for micro air vehicles [J].
Lian, YS ;
Shyy, W ;
Viieru, D ;
Zhang, BN .
PROGRESS IN AEROSPACE SCIENCES, 2003, 39 (6-7) :425-465