Explainable artificial intelligence for prediction of refractory ulcerative colitis: analysis of a Japanese Nationwide Registry

被引:0
作者
Sano, Masaya [1 ]
Kanatani, Yasuhiro [2 ]
Ueda, Takashi [1 ]
Nemoto, Shota [3 ]
Miyake, Yurin [2 ]
Tomita, Naoko [2 ]
Suzuki, Hidekazu [1 ]
机构
[1] Tokai Univ, Sch Med, Dept Gastroenterol, Kanagawa 2591193, Japan
[2] Tokai Univ, Sch Med, Dept Clin Pharmacol, 143 Shimokasuya, Isehara, Kanagawa, Japan
[3] Hitachi Ltd, Ind & Digital Business Unit, Chiyoda Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
Ulcerative colitis; artificial intelligence; nationwide registry; INFLAMMATORY-BOWEL-DISEASE; CLASSIFICATION; GUIDELINES; DIAGNOSIS;
D O I
10.1080/07853890.2025.2499960
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Ulcerative colitis (UC) is a chronic inflammatory bowel disease for which remission is dependent on corticosteroid (CS) treatment. The diversity of disease pathophysiology necessitates optimal case-specific treatment selection. This study aimed to identify prognostic factors for refractory UC using a machine learning model based on nationwide registry data. Methods: The study included 4003 patients with UC with a Mayo score of >= 3 at the time of registration who had been using CS since their entry out of 79,096 newly registered UC cases in a nationwide registry from April 2003 to March 2012 (before the widespread use of biologic agents in Japan) with 3-year data. A pointwise linear (PWL) model was used for machine learning. Results: A PWL model, which was developed to predict long-term remission (lasting >3 years), had an area-under-the-curve (AUC), precision rate, recall rate, and F-value of 0.774, 0.55, 0.70, 0.62, respectively, in the test dataset from the time of registration to 2 years later. Furthermore, the presence of pseudopolyps at the time of registration was significantly and negatively correlated with remission, highlighting its importance as a prognostic factor. Conclusions: In this study, we constructed a highly accurate prognosis prediction model for UC, in which inflammation persists for an extensive period, by training a machine learning model for long-term disease progression. The results showed that machine learning can be used to determine the factors affecting remission during the treatment of refractory UC.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Machine learning in clinical and epidemiological research: isn't it time for biostatisticians to work on it? [J].
Azzolina, Danila ;
Baldi, Ileana ;
Barbati, Giulia ;
Berchialla, Paola ;
Bottigliengo, Daniele ;
Bucci, Andrea ;
Calza, Stefano ;
Dolce, Pasquale ;
Edefonti, Valeria ;
Faragalli, Andrea ;
Fiorito, Giovanni ;
Gandin, Ilaria ;
Giudici, Fabiola ;
Gregori, Dario ;
Gregorio, Caterina ;
Ieva, Francesca ;
Lanera, Corrado ;
Lorenzoni, Giulia ;
Marchioni, Michele ;
Milanese, Alberto ;
Ricotti, Andrea ;
Sciannameo, Veronica ;
Solinas, Giuliana ;
Vezzoli, Marika .
EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2019, 16 (04)
[2]   Factors Associated with Response to Systemic Corticosteroids in Active Ulcerative Colitis: Results from a Prospective, Multicenter Trial [J].
Blesl, Andreas ;
Borenich, Andrea ;
Groechenig, Hans Peter ;
Novacek, Gottfried ;
Primas, Christian ;
Reinisch, Walter ;
Kutschera, Maximilian ;
Illiasch, Constanze ;
Hennlich, Barbara ;
Steiner, Pius ;
Koch, Robert ;
Tillinger, Wolfgang ;
Haas, Thomas ;
Reicht, Gerhard ;
Mayer, Andreas ;
Ludwiczek, Othmar ;
Miehsler, Wolfgang ;
Steidl, Karin ;
Binder, Lukas ;
Baumann-Durchschein, Franziska ;
Fuerst, Stefan ;
Reider, Simon ;
Watschinger, Christina ;
Wenzl, Heimo ;
Moschen, Alexander ;
Berghold, Andrea ;
Hoegenauer, Christoph .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (14)
[3]   The cost of inflammatory bowel disease in high-income settings: a Lancet Gastroenterology & Hepatology Commission [J].
Burisch, Johan ;
Zhao, Mirabella ;
Odes, Selwyn ;
De Cruz, Peter ;
Vermeire, Severine ;
Bernstein, Charles N. ;
Kaplan, Gilaad G. ;
Duricova, Dana ;
Greenberg, Dan ;
Melberg, Hans O. ;
Watanabe, Mamoru ;
Ahn, Hyeong Sik ;
Targownik, Laura ;
Pittet, Valerie E. H. ;
Annese, Vito ;
Park, K. T. ;
Katsanos, Konstantinos H. ;
Hoivik, Marte L. ;
Krznaric, Zeljko ;
Chaparro, Maria ;
Loftus, Edward V., Jr. ;
Lakatos, Peter L. ;
Gisbert, Javier P. ;
Bemelman, Willem ;
Moum, Bjorn ;
Gearry, Richard B. ;
Kappelman, Michael D. ;
Hart, Ailsa ;
Pierik, Marieke J. ;
Andrews, Jane M. ;
Ng, Siew C. ;
D'Inca, Renata ;
Munkholm, Pia .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2023, 8 (05) :458-492
[4]   Treatment Algorithm for Mild and Moderate-to-Severe Ulcerative Colitis: An Update [J].
Burri, Emanuel ;
Maillard, Michel H. ;
Schoepfer, Alain M. ;
Seibold, Frank ;
Van Assche, Gert ;
Riviere, Pauline ;
Laharie, David ;
Manz, Michael .
DIGESTION, 2020, 101 (SUPPL 1) :2-15
[5]   The Importance of Post-Inflammatory Polyps (PIPs) in Colorectal Cancer Surveillance in Inflammatory Bowel Diseases [J].
Candel, Ivanna ;
Wetwittayakhlang, Panu ;
Bessissow, Talat ;
Lakatos, Peter L. .
JOURNAL OF CLINICAL MEDICINE, 2025, 14 (02)
[6]   Application of Artificial Intelligence to Clinical Practice in Inflammatory Bowel Disease - What the Clinician Needs to Know [J].
Chen, David ;
Fulmer, Clifton ;
Gordon, Ilyssa O. ;
Syed, Sana ;
Stidham, Ryan W. ;
Vande Casteele, Niels ;
Qin, Yi ;
Falloon, Katherine ;
Cohen, Benjamin L. ;
Wyllie, Robert ;
Rieder, Florian .
JOURNAL OF CROHNS & COLITIS, 2022, 16 (03) :460-471
[7]   Diagnosis and classification of ulcerative colitis [J].
Conrad, Karsten ;
Roggenbuck, Dirk ;
Laass, Martin W. .
AUTOIMMUNITY REVIEWS, 2014, 13 (4-5) :463-466
[8]   Disease Activity Assessment in IBD: Clinical Indices and Biomarkers Fail to Predict Endoscopic Remission [J].
Falvey, James D. ;
Hoskin, Teagan ;
Meijer, Berrie ;
Ashcroft, Anna ;
Walmsley, Russell ;
Day, Andrew S. ;
Gearry, Richard B. .
INFLAMMATORY BOWEL DISEASES, 2015, 21 (04) :824-831
[9]   Improving the Accuracy of Diagnosis for Multiple-System Atrophy Using Deep Learning-Based Method [J].
Kanatani, Yasuhiro ;
Sato, Yoko ;
Nemoto, Shota ;
Ichikawa, Manabu ;
Onodera, Osamu .
BIOLOGY-BASEL, 2022, 11 (07)
[10]   National Registry of Designated Intractable Diseases in Japan: Present Status and Future Prospects [J].
Kanatani, Yasuhiro ;
Tomita, Naoko ;
Sato, Yoko ;
Eto, Akiko ;
Omoe, Hiroe ;
Mizushima, Hiroshi .
NEUROLOGIA MEDICO-CHIRURGICA, 2017, 57 (01) :1-7