A Hybrid Bottom-Up and Data-Driven Machine Learning Approach for Accurate Coarse-Graining of Large Molecular Complexes

被引:0
作者
Liebl, Korbinian [1 ,2 ]
Voth, Gregory A. [1 ,2 ]
机构
[1] Univ Chicago, Inst Biophys Dynam, Chicago Ctr Theoret Chem, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
FREE-ENERGY; DYNAMICS SIMULATIONS; DNA; METHODOLOGY; PERSPECTIVE; EXCHANGE; PROTEASE;
D O I
10.1021/acs.jctc.5c00063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bottom-up coarse-graining refers to the development of low-resolution simulation models that are thermodynamically consistent with certain distributions from fully atomistic simulations. Force-matching and relative entropy minimization represent two major, frequently applied methods that allow to develop such bottom-up models. Nevertheless, atomistic simulations can often provide only limited sampling of the phase space. For bottom-up coarse-graining, these limitations may result in overfitting of the atomistic reference data, especially for large molecular complexes, where the learning may be agnostic of the actual affinities between binding partners. As a solution to this problem, we devise a data-driven machine learning hybrid coarse-graining concept that represents a regularized version of the relative entropy minimization approach. We demonstrate that this new approach allows one to develop coarse-grained models for molecular complexes that reproduce the targeted binding affinity but also describe the underlying complex structure accurately. The trained models therefore show diverse behavior as they can undergo frequent unbinding and binding events and are also transferable for simulating entire protein lattices, e.g., for a virus capsid.
引用
收藏
页码:4846 / 4854
页数:9
相关论文
共 57 条
[1]   Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs [J].
Ashwood, Brennan ;
Jones, Michael S. ;
Radakovic, Aleksandar ;
Khanna, Smayan ;
Lee, Yumin ;
Sachleben, Joseph R. ;
Szostak, Jack W. ;
Ferguson, Andrew L. ;
Tokmakoff, Andrei .
BIOPHYSICAL JOURNAL, 2023, 122 (16) :3323-3339
[2]   Coarse-graining errors and numerical optimization using a relative entropy framework [J].
Chaimovich, Aviel ;
Shell, M. Scott .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (09)
[3]   The structure and physical properties of a packaged bacteriophage particle [J].
Coshic, Kush ;
Maffeo, Christopher ;
Winogradoff, David ;
Aksimentiev, Aleksei .
NATURE, 2024, 627 (8005) :905-914
[4]   Well-Tempered Metadynamics Converges Asymptotically [J].
Dama, James F. ;
Parrinello, Michele ;
Voth, Gregory A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[5]   DISSOCIATION AND ASSOCIATION OF THE HIV-1 PROTEASE DIMER SUBUNITS - EQUILIBRIA AND RATES [J].
DARKE, PL ;
JORDAN, SP ;
HALL, DL ;
ZUGAY, JA ;
SHAFER, JA ;
KUO, LC .
BIOCHEMISTRY, 1994, 33 (01) :98-105
[6]   #COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol [J].
Dommer, Abigail ;
Casalino, Lorenzo ;
Kearns, Fiona ;
Rosenfeld, Mia ;
Wauer, Nicholas ;
Ahn, Surl-Hee ;
Russo, John ;
Oliveira, Sofia ;
Morris, Clare ;
Bogetti, Anthony ;
Trifan, Anda ;
Brace, Alexander ;
Sztain, Terra ;
Clyde, Austin ;
Ma, Heng ;
Chennubhotla, Chakra ;
Lee, Hyungro ;
Turilli, Matteo ;
Khalid, Syma ;
Tamayo-Mendoza, Teresa ;
Welborn, Matthew ;
Christensen, Anders ;
Smith, Daniel Ga ;
Qiao, Zhuoran ;
Sirumalla, Sai K. ;
O'Connor, Michael ;
Manby, Frederick ;
Anandkumar, Anima ;
Hardy, David ;
Phillips, James ;
Stern, Abraham ;
Romero, Josh ;
Clark, David ;
Dorrell, Mitchell ;
Maiden, Tom ;
Huang, Lei ;
McCalpin, John ;
Woods, Christopher ;
Gray, Alan ;
Williams, Matt ;
Barker, Bryan ;
Rajapaksha, Harinda ;
Pitts, Richard ;
Gibbs, Tom ;
Stone, John ;
Zuckerman, Daniel M. ;
Mulholland, Adrian J. ;
Miller, Thomas, III ;
Jha, Shantenu ;
Ramanathan, Arvind .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (01) :28-44
[7]  
Durumeric A. E. P., 2024, PREPRINT
[8]   OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials [J].
Eastman, Peter ;
Galvelis, Raimondas ;
Pelaez, Raul P. ;
Abreu, Charlles R. A. ;
Farr, Stephen E. ;
Gallicchio, Emilio ;
Gorenko, Anton ;
Henry, Michael M. ;
Hu, Frank ;
Huang, Jing ;
Kramer, Andreas ;
Michel, Julien ;
Mitchell, Joshua A. ;
Pande, Vijay S. ;
Rodrigues, Joao P. G. L. M. ;
Rodriguez-Guerra, Jaime ;
Simmonett, Andrew C. ;
Singh, Sukrit ;
Swails, Jason ;
Turner, Philip ;
Wang, Yuanqing ;
Zhang, Ivy ;
Chodera, John D. ;
De Fabritiis, Gianni ;
Markland, Thomas E. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 128 (01) :109-116
[9]  
Frenkel D., 2023, Understanding Molecular Simulation
[10]   Molecular Dynamics Simulation for All [J].
Hollingsworth, Scott A. ;
Dror, Ron O. .
NEURON, 2018, 99 (06) :1129-1143