CEM Radiomics for Distinguishing Benign vs Malignant Lesions in Patients with Invasive Breast Cancer or Benign Breast Lesions

被引:0
作者
Fields, Jacquelyn [1 ]
Cen, Steven [1 ]
Lei, Xiaomeng [1 ]
Chang, Mathew [2 ]
Kinkar, Ketki [3 ]
Gujar, Shubham [3 ]
Lee, Sandy [1 ]
Larsen, Linda H. [1 ]
Yamashita, Mary [1 ]
Hwang, Darryl H. [1 ]
Thomas, Mariam [2 ]
Varghese, Bino [1 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA
[2] Univ Calif Los Angeles, Olive View Med Ctr, Los Angeles, CA USA
[3] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA
来源
2024 20TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM 2024 | 2024年
关键词
Breast cancer; CEM; Radiomics; Lesion characterization; Quantitative Imaging; MAMMOGRAPHY; MRI; IMAGES;
D O I
10.1109/SIPAIM62974.2024.10783603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this retrospective study, 126 women with 143 biopsy proven invasive breast cancers (IBC) or benign lesions were imaged using contrast-enhanced mammography (CEM), prior to any treatment. Size-matched segmentations were manually contoured by an experienced breast radiologist on the CEM capturing the breast lesion (denoted as ROI), breast parenchymal enhancement (BPE), and the fat, respectively. Radiomics analysis was performed using LIFEx software and 111 radiomics metrics spanning 6 different texture families were extracted from each segmentation. Predictive models of benign vs malignant lesions were developed using CEM radiomics models Random Forest, Real Adaboost, and ElasticNet classifiers with data from the ROI only, BPE only, and ROI + BPE. Radiomics values extracted from fat region were then subtracted from the radiomics metrics extracted from the ROI and BPE, respectively, to enhance data harmonization. The 10- fold cross validation was used to assess model performance. RF classifier achieved an AUC of 0.92 for the ROI + BPE. The Adaboost classifier achieved an AUC of 0.97 for the ROI only, and 0.90 for the BPE only. The high performance across all three assessments showed that CEM radiomics can distinguish between benign and malignant breast lesions using information from the background parenchyma with and without the lesion itself.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 2021, What Breast Medical Oncologists Need from Pathologists: Overview, Tumor Size, Histologic Grade
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   The Challenge of Choosing the Best Classification Method in Radiomic Analyses: Recommendations and Applications to Lung Cancer CT Images [J].
Corso, Federica ;
Tini, Giulia ;
Lo Presti, Giuliana ;
Garau, Noemi ;
De Angelis, Simone Pietro ;
Bellerba, Federica ;
Rinaldi, Lisa ;
Botta, Francesca ;
Rizzo, Stefania ;
Origgi, Daniela ;
Paganelli, Chiara ;
Cremonesi, Marta ;
Rampinelli, Cristiano ;
Bellomi, Massimo ;
Mazzarella, Luca ;
Pelicci, Pier Giuseppe ;
Gandini, Sara ;
Raimondi, Sara .
CANCERS, 2021, 13 (12)
[5]   CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma [J].
Demirjian, Natalie L. ;
Varghese, Bino A. ;
Cen, Steven Y. ;
Hwang, Darryl H. ;
Aron, Manju ;
Siddiqui, Imran ;
Fields, Brandon K. K. ;
Lei, Xiaomeng ;
Yap, Felix Y. ;
Rivas, Marielena ;
Reddy, Sharath S. ;
Zahoor, Haris ;
Liu, Derek H. ;
Desai, Mihir ;
Rhie, Suhn K. ;
Gill, Inderbir S. ;
Duddalwar, Vinay .
EUROPEAN RADIOLOGY, 2022, 32 (04) :2552-2563
[6]   Evaluation of Palpable Breast Abnormalities [J].
Dodelzon, Katerina ;
Katzen, Janine T. .
JOURNAL OF BREAST IMAGING, 2019, 1 (03) :253-263
[7]   Quantitative magnetic resonance imaging (q-MRI) for the assessment of soft-tissue sarcoma treatment response: a narrative case review of technique development [J].
Fields, Brandon K. K. ;
Hwang, Darryl ;
Cen, Steven ;
Desai, Bhushan ;
Gulati, Mittul ;
Hu, James ;
Duddalwar, Vinay ;
Varghese, Bino ;
Matcuk, George R., Jr. .
CLINICAL IMAGING, 2020, 63 (63) :83-93
[8]   Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM) [J].
Francescone, Mark A. ;
Jochelson, Maxine S. ;
Dershaw, D. David ;
Sung, Janice S. ;
Hughes, Mary C. ;
Zheng, Junting ;
Moskowitz, Chaya ;
Morris, Elizabeth A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (08) :1350-1355
[9]   Additive logistic regression: A statistical view of boosting - Rejoinder [J].
Friedman, J ;
Hastie, T ;
Tibshirani, R .
ANNALS OF STATISTICS, 2000, 28 (02) :400-407
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577