Evaluating Local Model Misspecification with Modification Indices in Bayesian Structural Equation Modeling

被引:0
作者
Garnier-Villarreal, Mauricio [1 ]
Jorgensen, Terrence D. [2 ]
机构
[1] Vrije Universiteit Amsterdam, Netherlands
[2] University of Amsterdam, Netherlands
来源
Structural Equation Modeling | 2025年 / 32卷 / 02期
关键词
Maximum likelihood estimation - Prediction models;
D O I
暂无
中图分类号
学科分类号
摘要
Model evaluation is a crucial step in SEM, consisting of two broad areas: global and local fit, where local fit indices are used to modify the original model. In the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are used to select the parameters that can be added to improve the fit. The purpose of this study is to extend the application of MI and SEPC to Bayesian SEM. We present how researchers can estimate posterior distributions of MI and SEPC using a posterior predictive model check (PPMC). We evaluated the effectiveness of these PPMCs with a simulation and found that MI can be used to detect the most relevant added parameters and that SEPC can be used as an effect size. Similar to maximum-likelihood estimation, the SEPC can overestimate the population value. Lastly, we present an example application of these indices. © 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
引用
收藏
页码:304 / 318
相关论文
empty
未找到相关数据