Double-Weak Coordination Electrolyte Enables 5 V and High Temperature Lithium Metal Batteries

被引:0
作者
Song, Jialin [1 ]
Luo, Pan [2 ]
Yang, Qinghua [3 ]
Chen, Qiu [3 ]
Yang, Haoyi [2 ]
Yang, Peng [1 ]
Li, Qian [1 ]
Tian, Kaixin [1 ]
Shen, Yin [1 ]
Wang, Mingshan [1 ]
Yang, Zhengzhong [4 ,5 ]
Mitlin, David [6 ,7 ]
Li, Xing [1 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Frontier Res Ctr Clean Energy, Beijing 100190, Peoples R China
[3] Guizhou Meiling Power Sources Co Ltd, State Key Lab Adv Chem Power Sources, Zunyi 563003, Peoples R China
[4] East China Normal Univ, China Key Lab Polar Mat & Devices, MOE, Shanghai 200062, Peoples R China
[5] East China Normal Univ, Dept Elect, Shanghai 200062, Peoples R China
[6] Univ Texas Austin, Mat Sci Program, Austin, TX 78712 USA
[7] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
double-weak solvation; high temperature operation; high voltage batteries; lithium metal batteries; phosphate electrolyte; HIGH-VOLTAGE;
D O I
10.1002/smll.202502620
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered oxide cathodes offer high specific capacity and operating voltage, whereas constructing a stable interface to maintain the stable operation of high-voltage cathodes under high charge state and elevated temperature remains challenging. Herein, a double-weak coordination strategy which triggers by single solvent and dilute is designed. The solvent tris(2,2,2-trifluoroethyl) phosphate (TFEP) exhibits weak lithium coordination due to the partial fluorination of the alkyl chain, while the dilute ethoxy(pentafluoro)cyclo triphosphazene (PFPN) is involved in the inner solvation structure by weak lithium-TFEP coordination and its mild lithium affinity. This double-weak coordination increases the local anion concentration within the solvation structure, reduces the desolvation barrier of Li+, optimizes the desolvation and leads to a robust, hybrid organic-inorganic interface. Specifically, the DWCE electrolyte shows remarkable improvements in cycling stability under 60 degrees C for 4.7 V Li(50 mu m)||NMC811 (1.84 mAh cm-2) cell, 4.8 and 5.0 V Li(50 mu m)||LRMO (1.75 mAh cm-2) cells. Meanwhile, 5.2 Ah Li||LRMO pouch cell using DWCE achieves a high energy density of 495 Wh kg-1 and DWCE-based Ah-level pouch cell also presents significantly enhanced safety under thermal runaway condition. This work provides a novel but universal double-weak coordination policy initiated by solvent and diluent for high energy density lithium metal batteries.
引用
收藏
页数:13
相关论文
共 38 条
[1]   Enhanced carrier mobility in MoSe2 by pressure modulation [J].
Bai, Zhiying ;
Zhang, He ;
He, Jiaqi ;
He, Dawei ;
Wang, Jiarong ;
Li, Guili ;
Bai, Jinxuan ;
Zhao, Kun ;
Yu, Xiaohui ;
Wang, Yongsheng ;
Zhang, Xiaoxian .
NANO RESEARCH, 2023, 16 (11) :12738-12744
[2]   The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium [J].
Chen, Rusong ;
Nolan, Adelaide M. ;
Lu, Jiaze ;
Wang, Junyang ;
Yu, Xiqian ;
Mo, Yifei ;
Chen, Liquan ;
Huang, Xuejie ;
Li, Hong .
JOULE, 2020, 4 (04) :812-821
[3]   Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries [J].
Cui, Zhuangzhuang ;
Jia, Zhuangzhuang ;
Ruan, Digen ;
Nian, Qingshun ;
Fan, Jiajia ;
Chen, Shunqiang ;
He, Zixu ;
Wang, Dazhuang ;
Jiang, Jinyu ;
Ma, Jun ;
Ou, Xing ;
Jiao, Shuhong ;
Wang, Qingsong ;
Ren, Xiaodi .
NATURE COMMUNICATIONS, 2024, 15 (01)
[4]   A self fire-extinguishing and high rate lithium-fluorinated carbon battery realized by ethoxy (pentafluoro) cyclotriphosphazene electrolyte additive design [J].
Dong, Lutan ;
Deng, Lequan ;
Wang, Zhaofen ;
Liu, Yaoyao ;
Zhan, Jun ;
Wang, Shuhua ;
Fang, Zhiwen ;
Guo, Feifei ;
Liu, Chao ;
Liu, Hong ;
Chen, Hao .
NANO ENERGY, 2024, 131
[5]   Localized high-concentration electrolytes get more localized through micelle-like structures [J].
Efaw, Corey M. ;
Wu, Qisheng ;
Gao, Ningshengjie ;
Zhang, Yugang ;
Zhu, Haoyu ;
Gering, Kevin ;
Hurley, Michael F. ;
Xiong, Hui ;
Hu, Enyuan ;
Cao, Xia ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Xiao, Jie ;
Yang, Xiao-Qing ;
Liu, Jun ;
Qi, Yue ;
Li, Bin .
NATURE MATERIALS, 2023, 22 (12) :1531-1539
[6]  
Fang M., 2023, ANGEW CHEM-GER EDIT, V63
[7]   A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium [J].
Fang, Mingming ;
Yue, Xinyang ;
Dong, Yongteng ;
Chen, Yuanmao ;
Liang, Zheng .
JOULE, 2024, 8 (01) :91-103
[8]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[9]  
Gao H., 2024, ANGEW CHEM-GER EDIT, V63
[10]   NETosis-Inspired Cell Surface-Constrained Framework Nucleic Acids Traps (FNATs) for Cascaded Extracellular Recognition and Cellular Behavior Modulation [J].
Gong, Hangsheng ;
Zhang, Yihan ;
Xue, Yuan ;
Fang, Bowen ;
Li, Yuting ;
Zhu, Xudong ;
Du, Yi ;
Peng, Pai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (28)