Ensemble of KalmanNets for Maneuvering Target Tracking

被引:0
作者
Mari, Marco [1 ]
Snidaro, Lauro [1 ]
机构
[1] Univ Udine, DMIF, Udine, Italy
来源
2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024 | 2024年
关键词
Target Tracking; Kalman Filter; Recurrent Neural Network; ALGORITHM; SYSTEMS;
D O I
10.23919/FUSION59988.2024.10706253
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking a maneuvering target requires the modeling of the target's movements by multiple pre-defined mathematical models. However, the uncertainty in the target's dynamics can lead traditional model-based (MB) tracking algorithms to significant performance degradation when model mismatch occurs. To tackle this problem, we propose the use of a Recurrent Neural Network (RNN) for the purpose of learning complex target dynamics. Following the recent advances in state estimation provided by KalmanNet, a neural network-aided Kalman Filter, the proposed approach aims to exploit its tracking performance in a multiple model schema to compensate for model mismatch across maneuvers, leading to a more prompt response to motion switches. The results over a simulated set of maneuvering target trajectories demonstrate the potential of the proposed approach over the MB solution.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2014, NIPS 2014 WORKSH DEE
[2]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[3]  
Cho K., 2014, P SSST 8 8 WORKSH SY, DOI DOI 10.3115/V1/W14-4012
[4]   Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization [J].
Coskun, Huseyin ;
Achilles, Felix ;
DiPietro, Robert ;
Navab, Nassir ;
Tombari, Federico .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5525-5533
[5]   Long short-term memory-based deep recurrent neural networks for target tracking [J].
Gao, Chang ;
Yan, Junkun ;
Zhou, Shenghua ;
Varshney, Pramod K. ;
Liu, Hongwei .
INFORMATION SCIENCES, 2019, 502 :279-296
[6]  
Gruber M., 1967, An approach to target tracking
[7]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[8]  
Iter D., 2016, Target tracking with Kalman Filtering, KNN and LSTMs, P1
[9]   A Mnemonic Kalman Filter for Non-Linear Systems With Extensive Temporal Dependencies [J].
Jung, Steffen ;
Schlangen, Isabel ;
Charlish, Alexander .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :1005-1009
[10]  
Kalman R.E., 1960, A new approach to linear filtering and prediction problems