Duality via convolution of W-algebras

被引:0
作者
Creutzig, Thomas [1 ]
Linshaw, Andrew R. [2 ]
Nakatsuka, Shigenori [1 ]
Sato, Ryo [3 ]
机构
[1] FAU Erlangen Nurnberg, Dept Math, Cauer Str 11, D-91058 Erlangen, Germany
[2] Univ Denver, Dept Math, Denver, CO 80210 USA
[3] Aichi Inst Technol, Ctr Gen Educ, Yakusa Cho, Toyota 4700392, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM REDUCTION; AFFINE; REPRESENTATIONS;
D O I
10.1007/s00029-025-01050-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Feigin-Frenkel duality is the isomorphism between the principal W-algebras of a simple Lie algebra g and its Langlands dual Lie algebra Lg. A generalization of this duality to a larger family of W-algebras called hook-type was recently conjectured by Gaiotto and Rap.cak and proved by the first two authors. It says that the affine cosets of two different hook-type W-(super)algebras are isomorphic. A natural question is whether the duality between the affine cosets can be enhanced to reconstruct one W-algebra from the other. There is a convolution operation that maps a hook-type W-algebra W to a certain relative semi-infinite cohomology of W tensored with a suitable kernel VOA. The first two authors conjectured previously that this cohomology is isomorphic to the Feigin-Frenkel dual hook-type W-algebra. Our main result is a proof of this conjecture.
引用
收藏
页数:38
相关论文
共 51 条
[1]  
Arakawa T, 2019, Arxiv, DOI arXiv:1811.01577
[2]   W-algebras as coset vertex algebras [J].
Arakawa, Tomoyuki ;
Creutzig, Thomas ;
Linshaw, Andrew R. .
INVENTIONES MATHEMATICAE, 2019, 218 (01) :145-195
[3]  
Arkhipov S, 2002, INT MATH RES NOTICES, V2002, P165
[4]  
Braverman A, 2022, COMMUN NUMBER THEORY, V16, P695
[5]  
Braverman A, 2024, Arxiv, DOI arXiv:2207.03115
[6]   Mirabolic Satake equivalence and supergroups [J].
Braverman, Alexander ;
Finkelberg, Michael ;
Ginzburg, Victor ;
Travkin, Roman .
COMPOSITIO MATHEMATICA, 2021, 157 (08) :1724-1765
[7]  
Coulembier K., 2014, Advances in Lie superalgebras, Springer INdAM Ser., V7, P19
[8]   Ordinary modules for vertex algebras of osp1|2n [J].
Creutzig, Thomas ;
Genra, Naoki ;
Linshaw, Andrew .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (817) :1-31
[9]  
Creutzig T, 2023, Arxiv, DOI arXiv:2311.10240
[10]   Trialities of orthosymplectic W-algebras [J].
Creutzig, Thomas ;
Linshaw, Andrew R. .
ADVANCES IN MATHEMATICS, 2022, 409