Optimal message-passing with noisy beeps

被引:0
作者
Davies-Peck, Peter [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Message Passing; Beeping Model; Superimposed Codes; ALGORITHMS;
D O I
10.1007/s00446-025-00488-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Beeping models are models for networks of weak devices, such as sensor networks or biological networks. In these networks, nodes are allowed to communicate only via emitting beeps: unary pulses of energy. Listening nodes have only the capability of carrier sensing: they can only distinguish between the presence or absence of a beep, but receive no other information. The noisy beeping model further assumes listening nodes may be disrupted by random noise. Despite this extremely restrictive communication model, it transpires that complex distributed tasks can still be performed by such networks. In this paper we provide an optimal procedure for simulating general message passing in the beeping and noisy beeping models. We show that a round of Broadcast CONGEST can be simulated in O(Delta logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\Delta \log n)$$\end{document} rounds of the noisy (or noiseless) beeping model, and a round of CONGEST can be simulated in O(Delta 2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\Delta <^>2\log n)$$\end{document} rounds (where Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the maximum degree of the network). We also prove lower bounds demonstrating that no simulation can use asymptotically fewer rounds. This allows a host of graph algorithms to be efficiently implemented in beeping models. We present several example applications, including an O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document}-round Broadcast CONGEST algorithm for maximal matching, which, when simulated using our method, immediately implies a near-optimal O(Delta log2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\Delta \log <^>2 n)$$\end{document}-round maximal matching algorithm in the noisy beeping model. A preliminary version of this paper appeared in the proceedings of the 2023 ACM Symposium on Principles of Distributed Computing (PODC) [14].
引用
收藏
页数:14
相关论文
共 31 条
[1]   Beeping a maximal independent set [J].
Afek, Yehuda ;
Alon, Noga ;
Bar-Joseph, Ziv ;
Cornejo, Alejandro ;
Haeupler, Bernhard ;
Kuhn, Fabian .
DISTRIBUTED COMPUTING, 2013, 26 (04) :195-208
[2]   A Biological Solution to a Fundamental Distributed Computing Problem [J].
Afek, Yehuda ;
Alon, Noga ;
Barad, Omer ;
Hornstein, Eran ;
Barkai, Naama ;
Bar-Joseph, Ziv .
SCIENCE, 2011, 331 (6014) :183-185
[3]  
Ahmadi M., 2018, 32 INT S DISTR COMP
[4]   Noisy beeping networks [J].
Ashkenazi, Yagel ;
Gelles, Ran ;
Leshem, Amir .
INFORMATION AND COMPUTATION, 2022, 289
[5]   The Locality of Distributed Symmetry Breaking [J].
Barenboim, Leonid ;
Elkin, Michael ;
Pettie, Seth ;
Schneider, Johannes .
JOURNAL OF THE ACM, 2016, 63 (03)
[6]  
Beauquier Joffroy, 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, P1754, DOI 10.1109/INFOCOM.2018.8486015
[7]   Optimal Multi-broadcast with Beeps Using Group Testing [J].
Beauquier, Joffroy ;
Burman, Janna ;
Davies, Peter ;
Dufoulon, Fabien .
STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2019, 2019, 11639 :66-80
[8]   Distributed Exact Weighted All-Pairs Shortest Paths in Near-Linear Time [J].
Bernstein, Aaron ;
Nanongkai, Danupon .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :334-342
[9]   Design patterns in beeping algorithms: Examples, emulation, and analysis [J].
Casteigts, A. ;
Metivier, Y. ;
Robson, J. M. ;
Zemmari, A. .
INFORMATION AND COMPUTATION, 2019, 264 :32-51
[10]  
Chechik S., 2019, 33 INT S DISTR COMP