Non-household environments make a major contribution to dengue transmission: implications for vector control

被引:0
作者
Pena-Garcia, Victor Hugo [1 ,2 ]
LaBeaud, A. Desiree [3 ]
Ndenga, Bryson A. [5 ]
Mutuku, Francis M. [6 ]
Bisanzio, Donal [7 ]
Andrews, Jason R. [4 ]
Mordecai, Erin A. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Pediat Infect Dis, Stanford, CA USA
[4] Stanford Univ, Med Med Infect Dis, Stanford, CA USA
[5] Kenya Govt Med Res Ctr, Nairobi, Kenya
[6] Tech Univ Mombasa, Dept Environm & Hlth Sci, Mombasa, Kenya
[7] Res Triangle Inst, Res Triangle Pk, NC USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2025年 / 12卷 / 04期
关键词
dengue; agent-based model; non-household environments; vector control; AEDES-AEGYPTI DIPTERA; PUERTO-RICO; MOVEMENT; CULICIDAE; OUTBREAK; PATTERNS; BURDEN; KENYA; TIME;
D O I
10.1098/rsos.241919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The incidence of Aedes-borne pathogens has been increasing despite vector control efforts. Control strategies typically target households (HH), where Aedes mosquitoes breed in HH containers and bite indoors. However, our study in Kenyan cities of Kisumu and Ukunda (2019-2022) revealed high Aedes abundance in public spaces, prompting the question: How important are non-household (NH) environments for dengue transmission and control? Using field data and human activity patterns, we developed an agent-based model simulating transmission across HH and five types of NH environments, which was then used to evaluate preventive (before an epidemic) and reactive (after an epidemic commences) vector control scenarios. Our findings estimate over half of infections occurring in NH settings, particularly workplaces, markets and recreational sites. Container removal was more effective in NH than in HH areas, contrasting with the global focus on HH-based management. Greater reductions in dengue cases occurred with early, high-coverage interventions, especially in NH locations. Additionally, local ecological factors, such as uneven water container distribution, influence control outcomes. This study underscores the importance of vector control in both HH and NH environments in endemic settings. It highlights a specific approach to inform evidence-based decision-making to target limited vector control resources for optimal control.
引用
收藏
页数:14
相关论文
共 58 条
[1]   A Critical Assessment of Vector Control for Dengue Prevention [J].
Achee, Nicole L. ;
Gould, Fred ;
Perkins, T. Alex ;
Reiner, Robert C., Jr. ;
Morrison, Amy C. ;
Ritchie, Scott A. ;
Gubler, Duane J. ;
Teyssou, Remy ;
Scott, Thomas W. .
PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (05)
[2]  
[Anonymous], 2016, Vector control operations framework for Zika virus
[3]  
[Anonymous], 2019, Kenya population and housing census
[4]   Role of Abandoned and Vacant Houses on Aedes aegypti Productivity [J].
Barrera, Roberto ;
Acevedo, Veronica ;
Amador, Manuel .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 104 (01) :145-150
[5]   The global distribution and burden of dengue [J].
Bhatt, Samir ;
Gething, Peter W. ;
Brady, Oliver J. ;
Messina, Jane P. ;
Farlow, Andrew W. ;
Moyes, Catherine L. ;
Drake, John M. ;
Brownstein, John S. ;
Hoen, Anne G. ;
Sankoh, Osman ;
Myers, Monica F. ;
George, Dylan B. ;
Jaenisch, Thomas ;
Wint, G. R. William ;
Simmons, Cameron P. ;
Scott, Thomas W. ;
Farrar, Jeremy J. ;
Hay, Simon I. .
NATURE, 2013, 496 (7446) :504-507
[6]   Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis [J].
Bowman, Leigh R. ;
Donegan, Sarah ;
McCall, Philip J. .
PLOS NEGLECTED TROPICAL DISEASES, 2016, 10 (03)
[7]   Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents [J].
Caldwell, Jamie M. ;
LaBeaud, A. Desiree ;
Lambin, Eric F. ;
Stewart-Ibarra, Anna M. ;
Ndenga, Bryson A. ;
Mutuku, Francis M. ;
Krystosik, Amy R. ;
Beltran Ayala, Efrain ;
Anyamba, Assaf ;
Borbor-Cordova, Mercy J. ;
Damoah, Richard ;
Grossi-Soyster, Elysse N. ;
Heras Heras, Froilan ;
Ngugi, Harun N. ;
Ryan, Sadie J. ;
Shah, Melisa M. ;
Sippy, Rachel ;
Mordecai, Erin A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites [J].
Edman, JD ;
Scott, TW ;
Costero, A ;
Morrison, AC ;
Harrington, LC ;
Clark, GG .
JOURNAL OF MEDICAL ENTOMOLOGY, 1998, 35 (04) :578-583
[9]   Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J].
Vos, Theo ;
Abajobir, Amanuel Alemu ;
Abbafati, Cristiana ;
Abbas, Kaja M. ;
Abate, Kalkidan Hassen ;
Abd-Allah, Foad ;
Abdulle, Abdishakur M. ;
Abebo, Teshome Abuka ;
Abera, Semaw Ferede ;
Aboyans, Victor ;
Abu-Raddad, Laith J. ;
Ackerman, Ilana N. ;
Adamu, Abdu Abdullahi ;
Adetokunboh, Olatunji ;
Afarideh, Mohsen ;
Afshin, Ashkan ;
Agarwal, Sanjay Kumar ;
Aggarwal, Rakesh ;
Agrawal, Anurag ;
Agrawal, Sutapa ;
Kiadaliri, Aliasghar Ahmad ;
Ahmadieh, Hamid ;
Ahmed, Muktar Beshir ;
Aichour, Amani Nidhal ;
Aichour, Ibtihel ;
Aichour, Miloud Taki Eddine ;
Aiyar, Sneha ;
Akinyemi, Rufus Olusola ;
Akseer, Nadia ;
Al Lami, Faris Hasan ;
Alahdab, Fares ;
Al-Aly, Ziyad ;
Alam, Khurshid ;
Alam, Noore ;
Alam, Tahiya ;
Alasfoor, Deena ;
Alene, Kefyalew Addis ;
Ali, Raghib ;
Alizadeh-Navaei, Reza ;
Alkerwi, Ala'a ;
Alla, Francois ;
Allebeck, Peter ;
Allen, Christine ;
Al-Maskari, Fatma ;
Al-Raddadi, Rajaa ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Altirkawi, Khalid A. ;
Amare, Azmeraw T. ;
Amini, Erfan .
LANCET, 2017, 390 (10100) :1211-1259
[10]   Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand [J].
Harrington, L. C. ;
Ponlawat, A. ;
Edman, J. D. ;
Scott, T. W. ;
Vermeylen, F. .
VECTOR-BORNE AND ZOONOTIC DISEASES, 2008, 8 (03) :415-423