Predictive for patients with pneumonia in pediatric intensive care unit

被引:0
作者
Jia, Mingxuan [1 ]
Hu, Xiyan [2 ]
Ji, Lin [3 ]
Lin, Jiawen [4 ]
Liu, Jialin [5 ]
Wang, Yong [3 ]
机构
[1] Middlebury Coll, Middlebury, VT USA
[2] Stanford Univ, Stanford, CA USA
[3] Shanghai Literature Inst Tradit Chinese Med, Shanghai, Peoples R China
[4] Yangpu Dist Hosp Tradit Chinese Med, Shanghai, Peoples R China
[5] ChengZheng Wisdom Shanghai Hlth Sci & Technol Co L, Shanghai, Peoples R China
关键词
pneumonia; intensive care unit; machine learning algorithms; paediatrics; predictive models; COMMUNITY-ACQUIRED PNEUMONIA; LOGISTIC-REGRESSION; LINEAR-REGRESSION; COVID-19; STATISTICS; MORTALITY; LACTATE; TESTS;
D O I
10.3389/fped.2025.1583573
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Introduction Pneumonia is globally recognized as a significant disease burden, particularly among pediatric patients in intensive care units (ICU), where its etiology is complex and prognosis often poor.Methods Data were extracted from a pediatric-specific intensive care (PIC) database, selecting 795 pediatric pneumonia patients in ICUs (2010-2018). After applying rigorous inclusion/exclusion criteria, 543 cases formed the study cohort. We analyzed patient baseline information and 70 laboratory indicators to identify 25 prognosis-associated biomarkers. For prognostic model construction, we used stepwise regression to filter 28 variables, then Spearman and Pearson correlation analyses to identify an intersection of 14 key indicators from the top 20 features. Twelve machine learning algorithms underwent parameter tuning and combination, forming 113 model combinations for survival outcome prediction.Results The "Stepglm [both] + GBM" combination achieved the highest average accuracy (79.4%) in both training and testing sets. Twelve prognostic variables were identified: WBC Count, Glucose, Neutrophils Count, Cystatin C, Temperature (body), Sodium (Whole Blood), Cholesterol (Total), Absolute Lymphocyte Count, Urea, Lactate, and Bilirubin (Total).Discussion These 12 variables provide a dependable basis and novel insights for prognostic evaluation, supporting clinical diagnosis, treatment, and early intervention.
引用
收藏
页数:21
相关论文
共 56 条
[2]   Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990-2021: a systematic analysis from the Global Burden of Disease Study 2021 [J].
Bender, Rose Grace ;
Sirota, Sarah Brooke ;
Swetschinski, Lucien R. ;
Dominguez, Regina-Mae Villanueva ;
Novotney, Amanda ;
Wool, Eve E. ;
Ikuta, Kevin S. ;
Vongpradith, Avina ;
Rogowski, Emma Lynn Best ;
Doxey, Matthew ;
Troeger, Christopher E. ;
Albertson, Samuel B. ;
Ma, Jianing ;
He, Jiawei ;
Maass, Kelsey Lynn ;
Simoes, Eric A. F. ;
Abdoun, Meriem ;
Aziz, Jeza Muhamad Abdul ;
Abdulah, Deldar Morad ;
Abu Rumeileh, Samir ;
Abualruz, Hasan ;
Aburuz, Salahdein ;
Adepoju, Abiola Victor ;
Adha, Rishan ;
Adikusuma, Wirawan ;
Adra, Saryia ;
Afraz, Ali ;
Aghamiri, Shahin ;
Agodi, Antonella ;
Ahmadzade, Amir Mahmoud ;
Ahmed, Haroon ;
Ahmed, Ayman ;
Akinosoglou, Karolina ;
AL-Ahdal, Tareq Mohammed Ali ;
Al-amer, Rasmieh Mustafa ;
Albashtawy, Mohammed ;
AlBataineh, Mohammad T. ;
Alemi, Hediyeh ;
Al-Gheethi, Adel Ali Saeed ;
Ali, Abid ;
Ali, Syed Shujait Shujait ;
Alqahtani, Jaber S. ;
AlQudah, Mohammad ;
Al-Tawfiq, Jaffar A. ;
Al-Worafi, Yaser Mohammed ;
Alzoubi, Karem H. ;
Amani, Reza ;
Amegbor, Prince M. ;
Ameyaw, Edward Kwabena ;
Amuasi, John H. .
LANCET INFECTIOUS DISEASES, 2024, 24 (09) :974-1002
[3]   Central Artery Hemodynamics in Angiotensin II-Induced Hypertension and Efects of Anesthesia [J].
Hopper, S. E. ;
Weiss, D. ;
Mikush, N. ;
Jiang, B. ;
Spronck, B. ;
Cavinato, C. ;
Humphrey, J. D. ;
Figueroa, C. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (04) :1051-1066
[4]   Testing the Significance of a Correlation With Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches [J].
Bishara, Anthony J. ;
Hittner, James B. .
PSYCHOLOGICAL METHODS, 2012, 17 (03) :399-417
[5]   Lactate on emergency department arrival as a predictor of mortality and site-of-care in pneumonia patients: a cohort study [J].
Chen, Yun-Xia ;
Li, Chun-Sheng .
THORAX, 2015, 70 (05) :404-410
[6]   Multi-scale gray level co-occurrence matrices for texture description [J].
de Siqueira, Fernando Roberti ;
Schwartz, William Robson ;
Pedrini, Helio .
NEUROCOMPUTING, 2013, 120 :336-345
[7]   CETP inhibition enhances monocyte activation and bacterial clearance and reduces streptococcus pneumonia - associated mortality in mice [J].
Deng, Haoyu ;
Liang, Wan Yi ;
Chen, Le Qi ;
Yuen, Tin Ho ;
Sahin, Basak ;
Vasilescu, Dragos M. ;
Trinder, Mark ;
Walley, Keith ;
Rensen, Patrick C. N. ;
Boyd, John H. ;
Brunham, Liam R. .
JCI INSIGHT, 2024, 9 (08)
[8]   Shen-ling-bai-zhu-san ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of Streptococcus pneumonia-induced pneumonia [J].
Feng, Jinli ;
Dai, Weibo ;
Zhang, Cheng ;
Chen, Houjun ;
Chen, Ziliang ;
Chen, Yongfeng ;
Pan, Qianyi ;
Zhou, Yongmao .
BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2020, 20 (01)
[9]   TRYPTOPHAN, SEROTONIN AND CARBOHYDRATE APPETITE - WILL THE REAL CARBOHYDRATE CRAVER PLEASE STAND UP [J].
FERNSTROM, JD .
JOURNAL OF NUTRITION, 1988, 118 (11) :1417-1419
[10]   Rank Sum Test or Paired t Test? [J].
Guo, Jing ;
Wu, Gang .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2011, 128 (04) :369E-369E