Explainable Integration of Knowledge Graphs Using Large Language Models

被引:1
作者
Ahmed, Abdullah Fathi [1 ]
Firmansyah, Asep Fajar [1 ,2 ]
Sherif, Mohamed Ahmed [1 ]
Moussallem, Diego [1 ,3 ]
Ngomo, Axel-Cyrille Ngonga [1 ]
机构
[1] Paderborn Univ, Warburger Str 100, D-33098 Paderborn, Germany
[2] State Islamic Univ Syarif Hidayatullah Jakarta, Jakarta, Indonesia
[3] Jusbrasil, Salvador, BA, Brazil
来源
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2023 | 2023年 / 13913卷
关键词
KG Integration; Neural Machine Verbalization; Explainable AI; Semantic Web; Machine Learning Applications; Large Language Models;
D O I
10.1007/978-3-031-35320-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linked knowledge graphs build the backbone of many data-driven applications such as search engines, conversational agents and e-commerce solutions. Declarative link discovery frameworks use complex link specifications to express the conditions under which a link between two resources can be deemed to exist. However, understanding such complex link specifications is a challenging task for non-expert users of link discovery frameworks. In this paper, we address this drawback by devising NMV-LS, a language model-based verbalization approach for translating complex link specifications into natural language. NMV-LS relies on the results of rule-based link specification verbalization to apply continuous training on T5, a large language model based on the Transformer architecture. We evaluated NMV-LS on English and German datasets using well-known machine translation metrics such as BLUE, METEOR, ChrF++ and TER. Our results suggest that our approach achieves a verbalization performance close to that of humans and outperforms state of the art approaches. Our source code and datasets are publicly available at https://github.com/dice-group/NMV-LS.
引用
收藏
页码:124 / 139
页数:16
相关论文
共 24 条
[1]   Multilingual Verbalization and Summarization for Explainable Link Discovery [J].
Ahmed, Abdullah Fathi ;
Sherif, Mohamed Ahmed ;
Moussallem, Diego ;
Ngomo, Axel-Cyrille Ngonga .
DATA & KNOWLEDGE ENGINEERING, 2021, 133
[2]   LSVS: Link Specification Verbalization and Summarization [J].
Ahmed, Abdullah Fathi ;
Sherif, Mohamed Ahmed ;
Ngomo, Axel-Cyrille Ngonga .
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2019), 2019, 11608 :66-78
[3]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
[4]  
Banerjee S., 2005, P ACL WORKSH INTR EX, P65
[5]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[6]  
Cho K., 2014, P 8 WORKSH SYNT SEM, DOI [DOI 10.3115/V1/W14-4012, 10.3115/v1/w14-4012]
[7]  
Cho K, 2014, P 2014 C EMP METH NA, P1724
[8]  
Dong YinpengHang Su., 2017, Improving interpretability of deep neural networks with semantic information
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[10]  
Isele R., 2011, WEBDB