To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes a dynamic coupling model considering ship roll and pitch environmental excitations. Then, under the maximum environmental excitation set in the experiment, the flexible cable parallel anti-swing system achieves swing suppression rates of 41.0% and 58.0% for the in-plane and out-of-plane angles of the DMP with regular geometric shape and mass distribution, respectively. For the DMP with irregular geometry and mass distribution, the suppression rates are 48.4% and 39.3% for the in-plane and out-of-plane angles, respectively. It is found that, after adjusting the lifting method and increasing the distance between the lifting points, the maximum in-plane angle of the payload decreases by 2.3%, while the out-of-plane angle maximum decreases by 52.0%. These results demonstrate the effectiveness of adjusting lifting methods in suppressing swing for irregular DMPs, thereby verifying the reliability and applicability of the flexible cable parallel anti-swing system and providing a reference for improving anti-swing performance and lifting efficiency in offshore DMP operations.