Rational approximation of Euler's constant using multiple orthogonal polynomials

被引:0
作者
Van Assche, Walter [1 ]
Wolf, Thomas [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
来源
COMBINATORICS AND NUMBER THEORY | 2025年 / 14卷 / 02期
关键词
Euler's constant; Gompertz constant; rational approximation; multiple orthogonal polynomials; Riemann-Hilbert problems; VALUES;
D O I
10.2140/cnt.2025.14.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct new rational approximants of Euler's constant that improve those of Aptekarev et al. (2007) and Rivoal (2009). The approximants are given in terms of certain (mixed-type) multiple orthogonal polynomials associated with the exponential integral. The dual family of multiple orthogonal polynomials leads to new rational approximants of the Gompertz constant that improve those of Aptekarev et al. (2007). Our approach is motivated by the fact that we can reformulate Rivoal's construction in terms of type-I multiple Laguerre polynomials of the first kind by making use of the underlying Riemann-Hilbert problem. As a consequence, we can drastically simplify Rivoal's approach, which allows us to study the Diophantine and asymptotic properties of the approximants more easily.
引用
收藏
页数:25
相关论文
共 25 条
[1]  
Apery R., 1979, Asterisque, V61, P11
[2]  
Aptekarev A. I., 2007, Sovrem. Probl. Mat., V9
[3]  
Beukers F., 1981, Pade approximation and its applications (Amsterdam, 1980, V888, P90
[4]   Analytic theory of singular difference equations. [J].
Birkhoff, GD ;
Trjitzinsky, WJ .
ACTA MATHEMATICA, 1933, 60 (01) :1-89
[5]   Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions [J].
Daems, E. ;
Kuijlaars, A. B. J. .
JOURNAL OF APPROXIMATION THEORY, 2007, 146 (01) :91-114
[6]  
Ismail M. E. H., 2009, CLASSICAL QUANTUM OR
[7]   On the convergence of type I Hermite-Pade approximants [J].
Lopez Lagomasino, G. ;
Medina Peralta, S. .
ADVANCES IN MATHEMATICS, 2015, 273 :124-148
[8]  
Nikishin E.M., 1991, TRANSLATIONS MATH MO, V92
[9]  
Olver F. W. J., 2023, NIST Digital Library of Mathematical Functions
[10]   On a continued fraction expansion for Euler's constant [J].
Pilehrood, Kh Hessami ;
Pilehrood, T. Hessami .
JOURNAL OF NUMBER THEORY, 2013, 133 (02) :769-786