A Salt Rock Creep Constitutive Model Considering Compression-Creep Coupling and Mutual Feedback Damage

被引:0
作者
Lu, Lele [1 ,2 ]
Liu, Tingjin [1 ]
Xue, Dongjie [3 ]
Huang, Shiping [1 ]
Wu, Zhide [4 ]
Yi, Haiyang [5 ]
Yang, Yang [2 ]
Zhang, Runtong [2 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[2] Longdong Univ, Sch Civil Engn, Qingyang 745000, Peoples R China
[3] China Univ Min & Technol, Sch Mech & Civil Engn, Beijing 100083, Peoples R China
[4] Res Inst Petr Explorat & Dev Langfang, Langfang 065007, Peoples R China
[5] North China Inst Sci & Technol, Architectural Engn Coll, Langfang 065201, Peoples R China
关键词
Acoustic emission; Damage evolution model; Derivative order; Maxwell creep model; Compressive strain; Creep strain participation rate; ACOUSTIC-EMISSION; SIMULATION; BEHAVIOR;
D O I
10.1007/s00603-025-04650-1
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Utilizing real-time acoustic emission monitoring data to predict the creep failure of salt rock has emerged as a crucial method for ensuring the smooth operation of salt cavern storage facilities. This article integrated real-time acoustic emission monitoring data from the creep process of salt rock to analyze the dynamic evolution of internal structural damage. It was discovered that the relationship between damage rate D(center dot)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{D}_{t}$$\end{document} and cumulative strain closely resembles the Weibull distribution function. By incorporating the Weibull probability distribution function and Drucker-Prager strength criterion, a damage evolution model that considers elastic stress threshold and cumulative damage effect was established. Based on the damage evolution characteristics observed during the creep process of salt rock, the linear solution values of the damage evolution model were revised and validated. The cumulative damage D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} from the salt rock creep-acoustic emission test was integrated into deformation modulus ED\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{D}$$\end{document} and viscosity coefficient eta D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta_{D}$$\end{document} of the Maxwell creep model, thereby creating a new Maxwell creep model that considers compression-creep coupling and mutual feedback damage. This model was then extended to three-dimensional stress conditions. The research findings reveal that the new creep model adeptly describes the entire creep process of salt rock. The derivative order beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} of the model reflects the geometric structure state and creep strain participation rate zeta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta$$\end{document} of salt rock during the creep process. The sudden increase in strain during the accelerated creep stage of salt rock is attributed to the compressive strain resulting from rapid structural degradation.
引用
收藏
页数:25
相关论文
共 45 条
[1]  
Chan KS, 1997, Int J Damage Mech, V6, P121, DOI [10.1177/105678959700600201, DOI 10.1177/105678959700600201]
[2]   Nonlinear Viscoelastic Closure of Salt Cavities [J].
Cornet, Jan S. ;
Dabrowski, Marcin .
ROCK MECHANICS AND ROCK ENGINEERING, 2018, 51 (10) :3091-3109
[3]   In situ rock salt permeability measurement for long term safety assessment of storage [J].
Cosenza, P ;
Ghoreychi, M ;
Bazargan-Sabet, B ;
de Marsily, G .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1999, 36 (04) :509-526
[4]   The Secondary Development and Application of the Improved Nishihara Creep Model in Soft Rock Tunnels [J].
Deng, Xianghui ;
Shi, Junxin ;
Li, Xiaolin ;
Wang, Rui ;
Zhang, Jinzeng ;
Yang, Xin .
BUILDINGS, 2023, 13 (08)
[5]  
Ding JY., 2013, Chin J Solid Mech, V34, P473480
[6]   Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J].
Eberhardt, E ;
Stead, D ;
Stimpson, B .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1999, 36 (03) :361-380
[7]  
Hansen FD, 1978, office of Waste Isolation, DOI [10.2172/12344857, DOI 10.2172/12344857]
[8]   Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities [J].
Hou, ZM .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2003, 40 (05) :725-738
[9]  
Kachanov L.M., 1958, Isv. Akad. Nauk., SSR., V8, P26, DOI DOI 10.1023/A:1018671022008
[10]  
[李浩然 Li Haoran], 2014, [岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V33, P2107