Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning

被引:0
作者
Catalano, Giovanni [1 ,2 ,3 ]
Alaimo, Laura [1 ,2 ,3 ]
Chatzipanagiotou, Odysseas P. [1 ,2 ]
Ruzzenente, Andrea [3 ]
Ratti, Francesca [4 ]
Aldrighetti, Luca [4 ]
Marques, Hugo P. [5 ]
Cauchy, Francois [6 ]
Lam, Vincent [7 ]
Poultsides, George A. [8 ]
Hugh, Tom [9 ]
Popescu, Irinel [10 ]
Alexandrescu, Sorin [10 ]
Martel, Guillaume [11 ]
Kitago, Minoru
Endo, Itaru [12 ]
Gleisner, Ana [13 ]
Shen, Feng [14 ]
Pawlik, Timothy M. [1 ,2 ]
机构
[1] Ohio State Univ, Wexner Med Ctr, Dept Surg, Columbus, OH USA
[2] James Comprehens Canc Ctr, Columbus, OH USA
[3] Univ Verona, Dept Surg, Verona, Italy
[4] Osped San Raffaele, Dept Surg, Milan, Italy
[5] Curry Cabral Hosp, Dept Surg, Lisbon, Portugal
[6] Beaujon Hosp, AP HP, Dept Hepatobiliopancreat & Liver Transplantat, F-92110 Clichy, France
[7] Westmead Hosp, Dept Surg, Sydney, Australia
[8] Stanford Univ, Dept Surg, Stanford, CA USA
[9] Univ Sydney, Sch Med, Dept Surg, Sydney, Australia
[10] Fundeni Clin Inst, Dept Surg, Bucharest, Romania
[11] Univ Ottawa, Dept Surg, Ottawa, ON, Canada
[12] Yokohama City Univ, Sch Med, Yokohama, Japan
[13] Univ Colorado, Dept Surg, Denver, CO USA
[14] Second Mil Med Univ, Eastern Hepatobiliary Surg Hosp, Dept Hepat Surg 4, Shanghai, Peoples R China
关键词
DIFFICULTY; SURGERY; PROPOSAL; OUTCOMES;
D O I
10.1016/j.hpb.2025.02.014
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could improve the accuracy of such tools. Methods: Patients who underwent curative-intent MILS for HCC were identified using an international database. An XGBoost ML model was developed to predict surgical complexity using clinical and radiological characteristics. Results: Among 845 patients, 186 (22.0 %) were classified as high-risk patients. In this subgroup, median Charlson Comorbidity Index (CCI) (5.0, IQR 3.0-7.0 vs. 2.0, IQR 2.0-5.0, p < 0.001) and tumor burden score (TBS) (median 4.12, IQR 3.0-5.1 vs. 4.22, IQR 3.2-7.1, p <0.001) were higher. The model was able to effectively predict complexity of surgery in both the training and testing cohorts with high discriminating power (ROC-AUC: 0.86, 95%CI 0.82-0.89 vs. 0.73, 95%CI 0.65-0.81). The most influential variables were CCI, TBS, BMI, extent of resection, and sex. Patients predicted to have a complex surgery were more likely to develop severe complications (OR 4.77, 95%CI 1.82-13.9, p = 0.002). An easy-to-use calculator was developed. Conclusion: Preoperative ML-prediction of complex MILS for HCC may improve preoperative planning, resource allocation, and patient outcomes.
引用
收藏
页码:807 / 815
页数:9
相关论文
共 52 条
[1]  
Alaimo L, 2023, ANN SURG ONCOL, V30, P5406, DOI 10.1245/s10434-023-13636-8
[2]   A comprehensive preoperative predictive score for post-hepatectomy liver failure after hepatocellular carcinoma resection based on patient comorbidities, tumor burden, and liver function: the CTF score [J].
Alaimo, Laura ;
Endo, Yutaka ;
Lima, Henrique A. ;
Moazzam, Zorays ;
Shaikh, Chanza Fahim ;
Ruzzenente, Andrea ;
Guglielmi, Alfredo ;
Ratti, Francesca ;
Aldrighetti, Luca ;
Marques, Hugo P. ;
Cauchy, Francois ;
Lam, Vincent ;
Poultsides, George A. ;
Popescu, Irinel ;
Alexandrescu, Sorin ;
Martel, Guillaume ;
Hugh, Tom ;
Endo, Itaru ;
Pawlik, Timothy M. .
JOURNAL OF GASTROINTESTINAL SURGERY, 2022, 26 (12) :2486-2495
[3]   The difficulty of laparoscopic liver resection [J].
Ban D. ;
Kudo A. ;
Ito H. ;
Mitsunori Y. ;
Matsumura S. ;
Aihara A. ;
Ochiai T. ;
Tanaka S. ;
Tanabe M. ;
Itano O. ;
Kaneko H. ;
Wakabayashi G. .
Updates in Surgery, 2015, 67 (2) :123-128
[4]   A novel difficulty scoring system for laparoscopic liver resection [J].
Ban, Daisuke ;
Tanabe, Minoru ;
Ito, Hiromitsu ;
Otsuka, Yuichiro ;
Nitta, Hiroyuki ;
Abe, Yuta ;
Hasegawa, Yasushi ;
Katagiri, Toshio ;
Takagi, Chisato ;
Itano, Osamu ;
Kaneko, Hironori ;
Wakabayashi, Go .
JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES, 2014, 21 (10) :745-753
[5]   Machine learning improves mortality risk prediction after cardiac surgery Systematic review and meta-analysis [J].
Benedetto, Umberto ;
Dimagli, Arnaldo ;
Sinha, Shubhra ;
Cocomello, Lucia ;
Gibbison, Ben ;
Caputo, Massimo ;
Gaunt, Tom ;
Lyon, Matt ;
Holmes, Chris ;
Angelini, Gianni D. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2022, 163 (06) :2075-+
[6]   Explainable machine learning framework to predict personalized physiological aging [J].
Bernard, David ;
Doumard, Emmanuel ;
Ader, Isabelle ;
Kemoun, Philippe ;
Pages, Jean-Christophe ;
Galinier, Anne ;
Cussat-Blanc, Sylvain ;
Furger, Felix ;
Ferrucci, Luigi ;
Aligon, Julien ;
Delpierre, Cyrille ;
Penicaud, Luc ;
Monsarrat, Paul ;
Casteilla, Louis .
AGING CELL, 2023, 22 (08)
[7]   Management of Hepatocellular Carcinoma A Review [J].
Brown, Zachary J. ;
Tsilimigras, Diamantis I. ;
Ruff, Samantha M. ;
Mohseni, Alireza ;
Kamel, Ihab R. ;
Cloyd, Jordan M. ;
Pawlik, Timothy M. .
JAMA SURGERY, 2023, 158 (04) :410-420
[8]  
Chen TQ, 2016, Arxiv, DOI [arXiv:1603.02754, 10.48550/arXiv.1603.02754, 10.48550/ARXIV.1603.02754]
[9]   Nomogram for predicting difficult total laparoscopic hysterectomy: a multi-institutional, retrospective model development and validation study [J].
Chen, Yin ;
Jiang, Jiahong ;
He, Min ;
Zhong, Kuiyan ;
Tang, Shuai ;
Deng, Li ;
Wang, Yanzhou .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (06) :3249-3257
[10]   Long-Term Survival Analysis of Pure Laparoscopic Versus Open Hepatectomy for Hepatocellular Carcinoma in Patients With Cirrhosis A Single-Center Experience [J].
Cheung, Tan To ;
Poon, Ronnie T. P. ;
Yuen, Wai Key ;
Chok, Kenneth S. H. ;
Jenkins, Caroline R. ;
Chan, See Ching ;
Fan, Sheung Tat ;
Lo, Chung Mau .
ANNALS OF SURGERY, 2013, 257 (03) :506-511