The Antimagic Orientations for Graphs Obtained by Some Graph Operations

被引:0
作者
Dhananjaya, Eranda [1 ]
Li, Wei-Tian [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2025年
关键词
antimagic labeling; antimagic orientation; corona product; lexicographic product; Mycielski construction; graph factor; PRODUCT; CORONA;
D O I
10.11650/tjm/250404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simple graph G is said to admit an antimagic orientation if there exist such that the vertex sums of vertices are pairwise distinct, where the vertex sum of a vertex is defined to be the sum of the labels of the in-edges minus that of the out-edges incident to the vertex. It was conjectured by Hefetz, Mu<spacing diaeresis>tze, and Schwartz [9] in 2010 that every connected simple graph admits an antimagic orientation. In this paper, we prove that several operations on graphs such as the corona product, the lexicographic product, and the Mycielski construction, together with some conditions on the graphs yield graphs satisfying the above conjecture.
引用
收藏
页数:17
相关论文
共 26 条
[1]   Dense graphs are antimagic [J].
Alon, N ;
Kaplan, G ;
Lev, A ;
Roditty, Y ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 47 (04) :297-309
[2]   Antimagic Labeling of Regular Graphs [J].
Chang, Feihuang ;
Liang, Yu-Chang ;
Pan, Zhishi ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2016, 82 (04) :339-349
[3]   Antimagicness of Generalized Corona and Snowflake Graphs [J].
Daykin J.W. ;
Iliopoulos C.S. ;
Miller M. ;
Phanalasy O. .
Mathematics in Computer Science, 2015, 9 (1) :105-111
[4]  
Frucht R., 1970, Aequationes Math, V4, P322, DOI [DOI 10.1007/BF01844162, 10.1007/BF01844162]
[5]  
Gallian J. A., 1998, Electron. J. Combin., V6
[6]   Antimagic orientation of lobsters [J].
Gao, Yuping ;
Shan, Songling .
DISCRETE APPLIED MATHEMATICS, 2020, 287 :21-26
[7]  
Handa AK, 2017, AKCE INT J GRAPHS CO, V14, P172, DOI 10.1016/j.akcej.2017.04.003
[8]  
Hartsfield N., 1990, PEARLS GRAPH THEORY
[9]   On Antimagic Directed Graphs [J].
Hefetz, Dan ;
Muetze, Torsten ;
Schwartz, Justus .
JOURNAL OF GRAPH THEORY, 2010, 64 (03) :219-232
[10]   On zero-sum partitions and anti-magic trees [J].
Kaplan, Gil ;
Lev, Arieh ;
Roditty, Yehuda .
DISCRETE MATHEMATICS, 2009, 309 (08) :2010-2014