Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis

被引:3
作者
Gao, Yulan [1 ]
Takenaka, Konii [1 ]
Xu, Si-Mei [1 ]
Cheng, Yuning [1 ]
Janitz, Michael [1 ]
机构
[1] Univ New South Wales, Sch Biotechnol & Biomol Sci, Gate 11,Via Bot St, Sydney, NSW 2052, Australia
关键词
circRNA/lncRNA-miRNA-mRNA; RNA sequencing; RNA networks; transcriptome; competitive endogenous RNAs; LONG NONCODING RNAS; CIRCULAR RNAS; TRANSLATIONAL REPRESSION; REGULATORY NETWORKS; MICRORNA TARGETS; LET-7; MICRORNA; GENE; IDENTIFICATION; CERNA; INITIATION;
D O I
10.1093/bfgp/elaf005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Non-coding RNAs (ncRNAs) are RNA molecules that are transcribed from DNA but are not translated into proteins. Studies over the past decades have revealed that ncRNAs can be classified into small RNAs, long non-coding RNAs and circular RNAs by genomic size and structure. Accumulated evidences have eludicated the critical roles of these non-coding transcripts in regulating gene expression through transcription and translation, thereby shaping cellular function and disease pathogenesis. Notably, recent studies have investigated the function of ncRNAs as competitive endogenous RNAs (ceRNAs) that sequester miRNAs and modulate mRNAs expression. The ceRNAs network emerges as a pivotal regulatory function, with significant implications in various diseases such as cancer and neurodegenerative disease. Therefore, we highlighted multiple bioinformatics tools and databases that aim to predict ceRNAs interaction. Furthermore, we discussed limitations of using current technologies and potential improvement for ceRNAs network detection. Understanding of the dynamic interplay within ceRNAs may advance the biological comprehension, as well as providing potential targets for therapeutic intervention.
引用
收藏
页数:14
相关论文
共 143 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]   doRiNA: a database of RNA interactions in post-transcriptional regulation [J].
Anders, Gerd ;
Mackowiak, Sebastian D. ;
Jens, Marvin ;
Maaskola, Jonas ;
Kuntzagk, Andreas ;
Rajewsky, Nikolaus ;
Landthaler, Markus ;
Dieterich, Christoph .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D180-D186
[3]   Challenges in microRNAs' targetome prediction and validation [J].
Arias, Jesus Eduardo Rojo ;
Busskamp, Volker .
NEURAL REGENERATION RESEARCH, 2019, 14 (10) :1672-1677
[4]   circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs [J].
Aufiero, Simona ;
Reckman, Yolan J. ;
Tijsen, Anke J. ;
Pinto, Yigal M. ;
Creemers, Esther E. .
BMC BIOINFORMATICS, 2020, 21 (01)
[5]   LncRNAnet: long non-coding RNA identification using deep learning [J].
Baek, Junghwan ;
Lee, Byunghan ;
Kwon, Sunyoung ;
Yoon, Sungroh .
BIOINFORMATICS, 2018, 34 (22) :3889-3897
[6]   Exploring the landscape of tools and resources for the analysis of long non-coding RNAs [J].
Ballarino, Monica ;
Pepe, Gerardo ;
Helmer-Citterich, Manuela ;
Palma, Alessandro .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 :4706-4716
[7]   ScRNA analysis and ferroptosis-related ceRNA regulatory network investigation in microglia cells at different time points after spinal cord injury [J].
Bao, Junping ;
Yang, Shu .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2023, 18 (01)
[8]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[9]   Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project [J].
Birney, Ewan ;
Stamatoyannopoulos, John A. ;
Dutta, Anindya ;
Guigo, Roderic ;
Gingeras, Thomas R. ;
Margulies, Elliott H. ;
Weng, Zhiping ;
Snyder, Michael ;
Dermitzakis, Emmanouil T. ;
Stamatoyannopoulos, John A. ;
Thurman, Robert E. ;
Kuehn, Michael S. ;
Taylor, Christopher M. ;
Neph, Shane ;
Koch, Christoph M. ;
Asthana, Saurabh ;
Malhotra, Ankit ;
Adzhubei, Ivan ;
Greenbaum, Jason A. ;
Andrews, Robert M. ;
Flicek, Paul ;
Boyle, Patrick J. ;
Cao, Hua ;
Carter, Nigel P. ;
Clelland, Gayle K. ;
Davis, Sean ;
Day, Nathan ;
Dhami, Pawandeep ;
Dillon, Shane C. ;
Dorschner, Michael O. ;
Fiegler, Heike ;
Giresi, Paul G. ;
Goldy, Jeff ;
Hawrylycz, Michael ;
Haydock, Andrew ;
Humbert, Richard ;
James, Keith D. ;
Johnson, Brett E. ;
Johnson, Ericka M. ;
Frum, Tristan T. ;
Rosenzweig, Elizabeth R. ;
Karnani, Neerja ;
Lee, Kirsten ;
Lefebvre, Gregory C. ;
Navas, Patrick A. ;
Neri, Fidencio ;
Parker, Stephen C. J. ;
Sabo, Peter J. ;
Sandstrom, Richard ;
Shafer, Anthony .
NATURE, 2007, 447 (7146) :799-816
[10]   Pairing beyond the Seed Supports MicroRNA Targeting Specificity [J].
Broughton, James P. ;
Lovci, Michael T. ;
Huang, Jessica L. ;
Yeo, Gene W. ;
Pasquinelli, Amy E. .
MOLECULAR CELL, 2016, 64 (02) :320-333