RVFL Classifier Based Ensemble Deep Learning for Early Diagnosis of Alzheimer's Disease

被引:2
作者
Maji, Krishanu [1 ]
Sharma, Rahul [1 ]
Verma, Shradha [1 ]
Goel, Tripti [1 ]
机构
[1] Natl Inst Technol Silchar, Biomed & Imaging Lab, Silchar, Assam, India
来源
NEURAL INFORMATION PROCESSING, ICONIP 2022, PT III | 2023年 / 13625卷
关键词
Alzheimer's Disease; Ensemble Deep Learning; Machine learning; RVFL;
D O I
10.1007/978-3-031-30111-7_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prevalence of Alzheimer's Disease (AD) is increasing daily in elderly people, estimated to be 15 million by the year 2050. AD is an irreversible neurodegenerative disorder that may lead to the death of the affected person. Only early AD diagnosis at the Mild Cognitive Impairment (MCI) stage can help clinicians to convert MCI patients back to Cognitive Normal (CN) or slow down the progression of the disease. The advent of neuroimaging techniques like Magnetic Resonance Imaging (MRI) helps in observing the anatomical changes in the brain of MCI and AD patients with improved resolution. AD mainly affects the temporal lobe structure, hippocampus volume, and cerebral cortex, which are visible in MRI scans. In this paper, an ensemble of three planes of MRI is proposed using a deep learning model, and the extracted features are classified using Random Vector Functional Link (RVFL) neural networks. The experiments are done on the publicly available dataset, Alzheimer's Disease Neuroimaging Initiative (ADNI), to classify AD vs CN vs MCI. The performance of the proposed model is compared in terms of accuracy, specificity, sensitivity, and precision.
引用
收藏
页码:616 / 626
页数:11
相关论文
共 21 条
[1]   Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging [J].
Ahmed, Samsuddin ;
Kim, Byeong C. ;
Lee, Kun Ho ;
Jung, Ho Yub .
PLOS ONE, 2020, 15 (12)
[2]   Twin SVM-Based Classification of Alzheimer's Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA [J].
Alam, Saruar ;
Kwon, Goo-Rak ;
Kim, Ji-In ;
Park, Chun-Su .
JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
[3]   Deep ensemble learning for Alzheimer's disease classification [J].
An, Ning ;
Ding, Huitong ;
Yang, Jiaoyun ;
Au, Rhoda ;
Ang, Ting F. A. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
[4]   A Comprehensive Machine-Learning Model Applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer's Disease (AD) in Older Subjects [J].
Battineni, Gopi ;
Chintalapudi, Nalini ;
Amenta, Francesco ;
Traini, Enea .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (07) :1-14
[5]   Time series classification using diversified Ensemble Deep Random Vector Functional Link and Resnet features [J].
Cheng, Wen Xin ;
Suganthan, P. N. ;
Katuwal, Rakesh .
APPLIED SOFT COMPUTING, 2021, 112
[6]   Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers [J].
Cogswell, Petrice M. ;
Wiste, Heather J. ;
Senjem, Matthew L. ;
Gunter, Jeffrey L. ;
Weigand, Stephen D. ;
Schwarz, Christopher G. ;
Arani, Arvin ;
Therneau, Terry M. ;
Lowe, Val J. ;
Knopman, David S. ;
Botha, Hugo ;
Graff-Radford, Jonathan ;
Jones, David T. ;
Kantarci, Kejal ;
Vemuri, Prashanthi ;
Boeve, Bradley F. ;
Mielke, Michelle M. ;
Petersen, Ronald C. ;
Jack, Clifford R., Jr. .
NEUROIMAGE, 2021, 224
[7]  
Dwivedi S., 2021, 2021 ADV COMM TECHN, P1
[8]   Multimodal Fusion-Based Deep Learning Network for Effective Diagnosis of Alzheimer's Disease [J].
Dwivedi, Shubham ;
Goel, Tripti ;
Tanveer, M. ;
Murugan, R. ;
Sharma, Rahul .
IEEE MULTIMEDIA, 2022, 29 (02) :45-55
[9]   Ensemble deep learning: A review [J].
Ganaie, M. A. ;
Hu, Minghui ;
Malik, A. K. ;
Tanveer, M. ;
Suganthan, P. N. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
[10]   Ensemble Deep Random Vector Functional Link Network Using Privileged Information for Alzheimer's Disease Diagnosis [J].
Ganaie, M. A. ;
Tanveer, M. .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) :534-545