Analyzing DNA Origami Nanostructure Assembly by Dynamic Light Scattering and Nanoparticle Tracking Analysis

被引:0
作者
Zhang, Qiaochu [1 ]
Chang, Xu [3 ]
Ebrahimimojarad, Alireza [1 ]
Shah, Akshay [2 ]
Zhang, Fei [3 ]
Fu, Jinglin [1 ,2 ]
机构
[1] Rutgers Univ Camden, Ctr Computat & Integrat Biol, Camden, NJ 08102 USA
[2] Rutgers Univ Camden, Dept Chem, Camden, NJ 08102 USA
[3] Rutgers Univ Newark, Dept Chem, Newark, NJ 07102 USA
来源
SMALL METHODS | 2025年
关键词
DNA origami; dynamic DNA self-assembly; dynamic light scattering; nanoparticle tracking analysis; size distribution; MULTIENZYME COMPLEXES;
D O I
10.1002/smtd.202500295
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The field of nucleic acid self-assembly has advanced significantly, enabling the creation of multi-dimensional nanostructures with precise sizes and shapes. These nanostructures hold great potential for various applications, including biocatalysis, smart materials, molecular diagnosis, and therapeutics. Here, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) are employed to investigate DNA origami nanostructures, focusing on size distribution and particle concentration. Compared to DLS, NTA provided higher resolution in size measurement with a smaller full-width at half-maximum (FWHM), making it particularly suitable for characterizing DNA nanostructure. To enhance sensitivity, a fluorescent NTA method is developed by incorporating an intercalation dye to amplify the fluorescence signals of DNA origami. This method is validated by analyzing various DNA origami structures, ranging from 1 and 2D flexible structures to 3D compact shapes, and evaluating structural assembly yields. Additionally, NTA is used to analyze dynamic DNA nanocages that undergo conformational switches among linear, square, and pyramid shapes in response to the addition of trigger strands. Quantitative size distribution data is crucial not only for production quality control but also for providing mechanistic insights into the various applications of DNA nanomaterials.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Protein diffusion coefficients determined by macroscopic-gradient Rayleigh interferometry and dynamic light scattering [J].
Annunziata, O ;
Buzatu, D ;
Albright, JG .
LANGMUIR, 2005, 21 (26) :12085-12089
[2]   Cryo-EM structure of a 3D DNA-origami object [J].
Bai, Xiao-chen ;
Martin, Thomas G. ;
Scheres, Sjors H. W. ;
Dietz, Hendrik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (49) :20012-20017
[3]   Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering [J].
Baker, Matthew A. B. ;
Tuckwell, Andrew J. ;
Berengut, Jonathan F. ;
Bath, Jonathan ;
Benn, Florence ;
Duff, Anthony P. ;
Whitten, Andrew E. ;
Dunn, Katherine E. ;
Hynson, Robert M. ;
Turberfield, Andrew J. ;
Lee, Lawrence K. .
ACS NANO, 2018, 12 (06) :5791-5799
[4]   DNA Nanotechnology: A foundation for Programmable Nanoscale Materials [J].
Bathe, Mark ;
Rothemund, Paul W. K. .
MRS BULLETIN, 2017, 42 (12) :882-888
[5]  
Boulais E, 2018, NAT MATER, V17, P159, DOI [10.1038/NMAT5033, 10.1038/nmat5033]
[6]  
Carr Bob., 2008, Innovations in Pharmaceutical Technology, V26, P38, DOI DOI 10.12681/OSJ.22598
[7]   Reconfigurable DNA Nanocage for Protein Encapsulation and Regulation [J].
Chang, Xu ;
Yang, Qi ;
Lee, Jung Yeon ;
Perumal, Devanathan ;
Zhang, Fei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (38) :26131-26138
[8]   DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and In Situ Electron Cryotomography [J].
Chen, Yuanfang ;
Huang, Yiqian ;
Yang, Yuhe R. .
JACS AU, 2024, 5 (01) :17-27
[9]   Controlled spatial characteristics of ligands on nanoparticles: Determinant of cellular functions [J].
Choi, Youngjin ;
Cho, Bo Kyung ;
Seok, Su Hyun ;
Kim, Chansoo ;
Ryu, Ju Hee ;
Kwon, Ick Chan .
JOURNAL OF CONTROLLED RELEASE, 2023, 360 :672-686
[10]   A Robust and Efficient Method to Purify DNA-Scaffolded Nanostructures by Gravity-Driven Size Exclusion Chromatography [J].
Ebrahimimojarad, Alireza ;
Wang, Zhicheng ;
Zhang, Qiaochu ;
Shah, Akshay ;
Brenner, Jacob S. ;
Fu, Jinglin .
LANGMUIR, 2024, 40 (16) :8365-8372