PixOOD: Pixel-Level Out-of-Distribution Detection

被引:0
作者
Vojir, Tomas [1 ]
Sochman, Jan [1 ]
Matas, Jiri [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Visual Recognit Grp, Prague, Czech Republic
来源
COMPUTER VISION - ECCV 2024, PT LX | 2025年 / 15118卷
关键词
Out-of-distribution; Anomaly; Data condensation; Expectation maximization;
D O I
10.1007/978-3-031-73027-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a pixel-level out-of-distribution detection algorithm, called PixOOD, which does not require training on samples of anomalous data and is not designed for a specific application which avoids traditional training biases. In order to model the complex intra-class variability of the in-distribution data at the pixel level, we propose an online data condensation algorithm which is more robust than standard K-means and is easily trainable through SGD. We evaluate PixOOD on a wide range of problems. It achieved state-of-the-art results on four out of seven datasets, while being competitive on the rest. The source code is available at https://github.com/vojirt/PixOOD.
引用
收藏
页码:93 / 109
页数:17
相关论文
共 45 条
[1]  
Bae J, 2023, IEEE I CONF COMP VIS, P6350, DOI 10.1109/ICCV51070.2023.00586
[2]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[3]   Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation [J].
Besnier, Victor ;
Bursuc, Andrei ;
Picard, David ;
Briot, Alexandre .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15681-15690
[4]  
Blum H, 2021, Arxiv, DOI arXiv:1904.03215
[5]   MODS--A USV-Oriented Object Detection and Obstacle Segmentation Benchmark [J].
Bovcon, Borja ;
Muhovic, Jon ;
Vranac, Dusko ;
Mozetic, Dean ;
Pers, Janez ;
Kristan, Matej .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) :13403-13418
[6]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[7]   A Discrepancy Aware Framework for Robust Anomaly Detection [J].
Cai, Yuxuan ;
Liang, Dingkang ;
Luo, Dongliang ;
He, Xinwei ;
Yang, Xin ;
Bai, Xiang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) :3986-3995
[8]  
Chan R., 2021, NeurIPS Datasets and Bench
[9]   Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation [J].
Chan, Robin ;
Rottmann, Matthias ;
Gottschalk, Hanno .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5108-5117
[10]  
Cho MS, 2022, Arxiv, DOI arXiv:2108.12659