p-Conjecture for tame automorphisms of C3

被引:0
作者
Holik, Daria [1 ]
Karas, M. [1 ]
机构
[1] AGH Univ Krakow, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2025年 / 39卷 / 01期
关键词
polynomial automorphism; tame automorphism; wild automorphism; multidegree; WILD AUTOMORPHISMS; MULTIDEGREES;
D O I
10.12958/adm2349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous Jung-van der Kulk [4, 11] theorem says that any polynomial automorphism of C-2 can be decomposed into a finite number of affine automorphisms and triangular automorphisms, i.e. that any polynomial automorphism of C-2 is a tame automorphism. In [5] there is a conjecture saying that for any tame automorphism of C-3, if (p, d(2), d(3)) is a multidegree of this automorphism, where p is a prime number and p <= d(2) <= d(3), then p|d(2) or d(3)is an element of pN + d(2)N. Up to now this conjecture is unsolved. In this note, we study this conjecture and give some results that are partial results in the direction of solving the conjecture. We also give some complimentary results.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 21 条
[1]   Separability of wild automorphisms of a polynomial ring [J].
Edo, E. ;
Kanehira, T. ;
Karas, M. ;
Kuroda, S. .
TRANSFORMATION GROUPS, 2013, 18 (01) :81-96
[2]   On total birational transformations of the plane. [J].
Jung, WE .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1942, 184 (1/4) :161-174
[3]  
Karas M., 2011, Bull. Pol. Acad. Sci. Math., V59, P27, DOI [10.4064/ba59-1-4, DOI 10.4064/BA59-1-4]
[4]  
Karas M., 2011, Diss. Math., V477
[5]  
Karas M., 2012, Bull. Pol. Acad. Sci. Math., V60, P211, DOI [10.4064/ba60-3-2, DOI 10.4064/BA60-3-2]
[6]   On multidegrees of tame and wild automorphisms of C3 [J].
Karas, Marek ;
Zygadlo, Jakub .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) :2843-2846
[7]   THERE IS NO TAME AUTOMORPHISM OF C3 WITH MULTIDEGREE (3,4,5) [J].
Karas, Marek .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) :769-775
[8]   Tame automorphisms of C3 with multidegree of the form (3, d2, d3) [J].
Karas, Marek .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) :2144-2147
[9]   A generalization of the Shestakov-Umirbaev inequality [J].
Kuroda, Shigeru .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) :495-510
[10]   Weighted multidegrees of polynomial automorphisms over a domain [J].
Kuroda, Shigeru .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (01) :119-149