Hypervolume-based Multi-Objective Expected Improvement for Three-Objective Functions

被引:0
作者
del Rio, Jose Eugenio Valenzuela [1 ]
Mavris, Dimitri [2 ]
机构
[1] Siemens Technol, Orlando, FL 32803 USA
[2] Georgia Inst Technol, Adv Aerosp Syst Anal, Atlanta, GA 30332 USA
来源
AIAA SCITECH 2024 FORUM | 2024年
关键词
EVOLUTIONARY ALGORITHMS; OPTIMIZATION; DESIGN;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper proposes a methodology for the direct quadrature of hypervolume-based expected improvement when objective spaces have more than two dimensions. New terms with respect to the hypervolume-based expected improvement for the-two objective case are explained and derived. When adaptively sampling computationally intensive multi-objective domains, the proposed methodology represents an alternative to the inaccurate and resource-consuming current state-of-the-art method, Monte Carlo integration, for the quadrature calculation of the hypervolume-based expected improvement. The methodology is first compared with the current state-of-the-art one on typical multi-objective canonical problems. This comparison allows to determine in which conditions each of the methodologies is more competitive while adaptively sampling multi-objective domains of computationally intensive functions. Next, a practical design space of an engineering system is adaptively sampled using the proposed methodology for the quadrature.
引用
收藏
页数:20
相关论文
共 42 条
[11]   Single-objective and multiobjective evolutionary optimization assisted by Gaussian random field metamodels [J].
Emmerich, Michael T. M. ;
Giannakoglou, Kyriakos C. ;
Naujoks, Boris .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) :421-439
[12]  
Emmerich MTM, 2011, IEEE C EVOL COMPUTAT, P2147
[13]  
Fleischer M., 2003, P EV MULT OPT 2 INT
[14]  
Forrester A, 2008, ENG DESIGN VIA SURRO, DOI 10.1002/9780470770801
[15]   Design and analysis of "Noisy" computer experiments [J].
Forrester, Alexander I. J. ;
Keane, Andy J. ;
Bressloff, Neil W. .
AIAA JOURNAL, 2006, 44 (10) :2331-2339
[16]   A Surrogate-Based Approach to Reduced-Order Dynamic Stall Modeling [J].
Glaz, Bryan ;
Liu, Li ;
Friedmann, Peretz P. ;
Bain, Jeremy ;
Sankar, Lakshmi N. .
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2012, 57 (02)
[17]   Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework [J].
Glaz, Bryan ;
Liu, Li ;
Friedmann, Peretz P. .
AIAA JOURNAL, 2010, 48 (10) :2418-2429
[18]   A review of multiobjective test problems and a scalable test problem toolkit [J].
Huband, Simon ;
Hingston, Phil ;
Barone, Luigi ;
While, Lyndon .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (05) :477-506
[19]   Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms [J].
Jansson, N. ;
Wakeman, W. D. ;
Manson, J.-A. E. .
COMPOSITE STRUCTURES, 2007, 80 (01) :21-31
[20]   Comparative studies of metamodelling techniques under multiple modelling criteria [J].
Jin, R ;
Chen, W ;
Simpson, TW .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 23 (01) :1-13