Strongly global topological equivalence on time scales

被引:0
作者
Xia, Yonghui [1 ]
Song, Jie [2 ]
机构
[1] Foshan Univ, Sch Math, Foshan 528000, Peoples R China
[2] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
LINEAR DYNAMIC EQUATIONS; EXPONENTIAL DICHOTOMIES; DIFFERENTIAL-EQUATIONS; COMPARISON-THEOREMS; LINEARIZATION; SYSTEMS; STABILITY; EXISTENCE;
D O I
10.1063/5.0231006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we establish the strongly topological equivalence on time scales between the quasilinear coupled system and its linear part without the assumption that the whole linear system admits exponential dichotomy. Our results generalize and improve some previous known literature.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI DOI 10.1007/BF03322019
[3]  
BOHNER M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[4]  
Bohner M., 2003, Introduction to the Time Scales Calculus: Advances in Dynamic Equations on Time Scales
[5]   Periodicity of scalar dynamic equations and applications to population models [J].
Bohner, Martin ;
Fan, Meng ;
Zhang, Jimin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :1-9
[6]   Line integrals and Green's formula on time scales [J].
Bohner, Martin ;
Guseinov, Gusein Sh. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1124-1141
[7]  
Coppel W. A., 1978, LECT NOTES MATH, V629
[8]   Stability for time varying linear dynamic systems on time scales [J].
DaCunha, JJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) :381-410
[9]   Stability radii for positive linear time-invariant systems on time scales [J].
Doan, T. S. ;
Kalauch, A. ;
Siegmund, S. ;
Wirth, F. R. .
SYSTEMS & CONTROL LETTERS, 2010, 59 (3-4) :173-179
[10]  
Doan T.S., 2009, Nonlinear Dynamics and Systems Theory, V9, P37