Classification of transgenic corn varieties using terahertz spectroscopy and convolutional neural network

被引:0
作者
Jiang, Yuying [1 ,2 ,3 ]
Wen, Xixi [1 ,2 ,4 ]
Ge, Hongyi [1 ,2 ,4 ]
Li, Guangming [1 ,2 ,4 ]
Chen, Hao [1 ,2 ,4 ]
Jiang, Mengdie [1 ,2 ,4 ]
Sun, Qingcheng [1 ,2 ,4 ]
Wei, Shilei [1 ,2 ,4 ]
Li, Peng [5 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Henan Prov Key Lab Grain Photoelect Detect & Contr, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Sch Artificial Intelligence & Big Data, Zhengzhou 450001, Peoples R China
[4] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
[5] Henan Univ Technol, Inst Complex Sci, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Terahertz spectroscopy; Transgenic corn; Convolutional neural network; Support vector machine; Classification;
D O I
10.1016/j.jfca.2025.107771
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Corn is the largest grain crop in China. With the increasing use of transgenic corn in agricultural production, accurately identifying transgenic corn varieties has become crucial for ensuring food safety and quality. This study combines terahertz time-domain spectroscopy (THz-TDS) technology with a convolutional neural network (CNN) to classify five transgenic corn varieties. First, the time-domain spectra of transgenic corn were collected, and the frequency-domain spectra and absorption coefficient spectra were calculated. Next, abnormal data were removed using the isolation forest algorithm. The data were then preprocessed using the first derivative (FD) and principal component analysis (PCA) to extract effective spectral features. Based on these features, classification models were constructed using support vector machine (PCA-SVM), grid search optimized SVM (PCA-GS-SVM), particle swarm optimization SVM (PCA-PSO-SVM), and hippopotamus optimization SVM (PCA-HO-SVM). Additionally, a one-dimensional CNN (1D-CNN) model was built using the full-band spectral data. The results indicate that the performance of the 1D-CNN model with FD preprocessing was significantly improved, with an accuracy of 96.68 % and a misclassification rate of only 3.32 %. The study effectively classifies transgenic corn with high accuracy, showing potential for widespread application in quality detection.
引用
收藏
页数:12
相关论文
共 29 条
[1]   A highly efficient transgene knock-in technology in clinically relevant cell types [J].
Allen, Alexander G. ;
Khan, Samia Q. ;
Margulies, Carrie M. ;
Viswanathan, Ramya ;
Lele, Swarali ;
Blaha, Laura ;
Scott, Sean N. ;
Izzo, Kaitlyn M. ;
Gerew, Alexandra ;
Pattali, Rithu ;
Cochran, Nadire R. ;
Holland, Carl S. ;
Zhao, Amy H. ;
Sherman, Stephen E. ;
Jaskolka, Michael C. ;
Wu, Meng ;
Wilson, Aaron C. ;
Sun, Xiaoqi ;
Ciulla, Dawn M. ;
Zhang, Deric ;
Nelson, Jacqueline D. ;
Zhang, Peisheng ;
Mazzucato, Patrizia ;
Huang, Yan ;
Giannoukos, Georgia ;
Marco, Eugenio ;
Nehil, Michael ;
Follit, John A. ;
Chang, Kai-Hsin ;
Shearman, Mark S. ;
Wilson, Christopher J. ;
Zuris, John A. .
NATURE BIOTECHNOLOGY, 2024, 42 (03) :458-469
[2]   Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm [J].
Amiri, Mohammad Hussein ;
Hashjin, Nastaran Mehrabi ;
Montazeri, Mohsen ;
Mirjalili, Seyedali ;
Khodadadi, Nima .
SCIENTIFIC REPORTS, 2024, 14 (01)
[3]   Toward intelligent food drying: Integrating artificial intelligence into drying systems [J].
Ashtiani, Seyed-Hassan Miraei ;
Martynenko, Alex .
DRYING TECHNOLOGY, 2024, 42 (08) :1240-1269
[4]   Rapid Classification of Wheat Grain Varieties Using Hyperspectral Imaging and Chemometrics [J].
Bao, Yidan ;
Mi, Chunxiao ;
Wu, Na ;
Liu, Fei ;
He, Yong .
APPLIED SCIENCES-BASEL, 2019, 9 (19)
[5]   Classification of wheat grain varieties using terahertz spectroscopy and convolutional neural network [J].
Chen, Fang ;
Shen, Yin ;
Li, Guanglin ;
Ai, Ming ;
Wang, Liang ;
Ma, Huizhen ;
He, Wende .
JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024, 129
[6]   Distinguishing different proteins based on terahertz spectra by visual geometry group 16 neural network [J].
Chen, Yusa ;
Huang, Xiwen ;
Wu, Meizhang ;
Hao, Jixuan ;
Cao, Yunhao ;
Sun, Hongshun ;
Ma, Lijun ;
Li, Liye ;
Wu, Wengang ;
Zhao, Guozhong ;
Meng, Tianhua .
ISCIENCE, 2025, 28 (04)
[7]   TSMC-Net: Deep-Learning Multigas Classification Using THz Absorption Spectra [J].
Chowdhury, M. Arshad Zahangir ;
Rice, Timothy E. ;
Oehlschlaeger, Matthew A. .
ACS SENSORS, 2023, 8 (03) :1230-1240
[8]   Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics [J].
Dong, Xinyi ;
Dong, Ying ;
Liu, Jinming ;
Wang, Chunqi ;
Bao, Changhao ;
Wang, Na ;
Zhao, Xiaoyu ;
Chen, Zhengguang .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 323
[9]   Material parameter estimation with terahertz time-domain spectroscopy [J].
Dorney, TD ;
Baraniuk, RG ;
Mittleman, DM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07) :1562-1571
[10]   A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (03) :739-746