Deep Reinforcement Learning for Control Design of Quantum Gates

被引:0
作者
Hu, Shouliang [1 ]
Chen, Chunlin [1 ]
Dong, Daoyi [2 ]
机构
[1] Nanjing Univ, Dept Control & Syst Engn, Nanjing 210093, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
来源
2022 13TH ASIAN CONTROL CONFERENCE, ASCC | 2022年
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; quantum control; quantum gate;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates quantum gate control problems using the deep reinforcement learning algorithm, i.e., a model-free machine learning method. We implement the twin delayed deep deterministic policy gradient (TD3) algorithm to search for piece-wise constant control pulses for quantum gates through the trail interaction with the quantum system. Simulation results on four typical gates, including three one-qubit gates and a two-qubit CNOT gate, demonstrate that deep reinforcement learning exhibits improved performance for quantum gate control tasks. By setting punishment for steps in the reward function, DRL can automatically find a shorter control sequence than the traditional gradient-based algorithm (e.g., GRAPE algorithm) and the evolutionary algorithm (e.g., DE algorithm) while maintaining high control precision.
引用
收藏
页码:2367 / 2372
页数:6
相关论文
共 29 条
[1]   Deep reinforcement learning for quantum gate control [J].
An, Zheng ;
Zhou, D. L. .
EPL, 2019, 126 (06)
[2]  
Borah S, 2021, Arxiv, DOI arXiv:2104.11856
[3]   Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator [J].
Bukov, Marin .
PHYSICAL REVIEW B, 2018, 98 (22)
[4]   Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems [J].
Chen, Chunlin ;
Dong, Daoyi ;
Li, Han-Xiong ;
Chu, Jian ;
Tarn, Tzyh-Jong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) :920-933
[5]  
Dong D., 2021, Encyclopedia of Systems and Control, P1090, DOI DOI 10.1007/978-1-4471-5102-9100161-1
[6]   Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning [J].
Dong, Daoyi ;
Chen, Chunlin ;
Tarn, Tzyh-Jong ;
Pechen, Alexander ;
Rabitz, Herschel .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (04) :957-962
[7]   Learning Control of Quantum Systems Using Frequency-Domain Optimization Algorithms [J].
Dong, Daoyi ;
Shu, Chuan-Cun ;
Chen, Jiangchao ;
Xing, Xi ;
Ma, Hailan ;
Guo, Yu ;
Rabitz, Herschel .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (04) :1791-1798
[8]   Learning-Based Quantum Robust Control: Algorithm, Applications, and Experiments [J].
Dong, Daoyi ;
Xing, Xi ;
Ma, Hailan ;
Chen, Chunlin ;
Liu, Zhixin ;
Rabitz, Herschel .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3581-3593
[9]   Learning robust pulses for generating universal quantum gates [J].
Dong, Daoyi ;
Wu, Chengzhi ;
Chen, Chunlin ;
Qi, Bo ;
Petersen, Ian R. ;
Nori, Franco .
SCIENTIFIC REPORTS, 2016, 6
[10]  
Fujimoto S, 2018, PR MACH LEARN RES, V80