CT-based deep learning radiomics analysis for preoperative Lauren classification in gastric cancer and explore the tumor microenvironment

被引:0
作者
Cheng, Ming [1 ,2 ]
Guo, Yimin [3 ,4 ]
Zhao, Huiping [5 ]
Zhang, Hanyue [3 ,4 ]
Liang, Pan [3 ,4 ]
Gao, Jianbo [3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Med Informat, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[2] Inst Interconnected Intelligent Hlth Management He, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[4] Henan Key Lab Image Diag & Treatment Digest Syst T, Zhengzhou 450052, Henan, Peoples R China
[5] Shaanxi Prov Peoples Hosp, Dept Radiol, Xian 710068, Shaanxi, Peoples R China
关键词
Deep learning; Gastric cancer; Lauren classification; Radiomics nomogram; Tumor microenvironment; LYMPH-NODE METASTASIS; MOLECULAR CLASSIFICATION; PREDICTION; SURVIVAL; DISEASE; RECURRENCE; DIAGNOSIS; NOMOGRAM; MODEL;
D O I
10.1016/j.ejro.2025.100667
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This study aimed to investigate the usefulness of CT-based deep learning radiomics analysis (DLRA) for preoperatively differentiating Lauren classification in gastric cancer (GC) patients and explore the tumor microenvironment. Methods: 578 patients were recruited from January 2015 to June 2024, and divided into the training cohort (n = 311), the internal validation cohort (n = 132), and the external validation cohort (n = 135). Clinical characteristics were collected. Radiomics features were extracted from CT images at arterial phase (AP) and venous phase (VP). A radiomics nomogram incorporating radiomics signature and clinical information was built for distinguishing Lauren classification, and its discrimination, calibration, and clinical usefulness were evaluated. RNA sequencing data from The Cancer Imaging Archive database were used to perform transcriptomics analysis. Results: The nomogram incorporating the two radiomics signatures and clinical characteristics exhibited good discrimination of Lauren classification on all cohorts [overall C-indexes 0.815 (95 % CI: 0.739-0.869) in the training cohort, 0.785 (95 % CI: 0.702-0.834) in the internal validation cohort, 0.756 (95 % CI: 0.685-0.816) in the external validation cohort]. It outperformed the clinical model in predictive ability. The calibration and decision curve substantiated the model's excellent fitness and clinical applicability. Further, transcriptomics analysis showed that the differentially expressed genes of different Lauren types were mainly enriched in pathways related to cell contraction and migration, and the infiltration degree of various immune cells was also significantly different. Conclusions: DLRA effectively differentiated Lauren classification in GC, and our analysis of transcriptomic data across different Lauren subtypes revealed the heterogeneity within the GC microenvironment.
引用
收藏
页数:12
相关论文
共 59 条
[31]   Lauren classification identifies distinct prognostic value and functional status of intratumoral CD8+T cells in gastric cancer [J].
Li, Ruochen ;
Zhang, Heng ;
Cao, Yifan ;
Liu, Xin ;
Chen, Yifan ;
Qi, Yangyang ;
Wang, Jieti ;
Yu, Kuan ;
Lin, Chao ;
Liu, Hao ;
He, Hongyong ;
Li, He ;
Chen, Lingli ;
Shen, Zhenbin ;
Qin, Jing ;
Zhang, Weijuan ;
Sun, Yihong ;
Xu, Jiejie .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2020, 69 (07) :1327-1336
[32]   Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis [J].
Ligero, Marta ;
Jordi-Ollero, Olivia ;
Bernatowicz, Kinga ;
Garcia-Ruiz, Alonso ;
Delgado-Munoz, Eric ;
Leiva, David ;
Mast, Richard ;
Suarez, Cristina ;
Sala-Llonch, Roser ;
Calvo, Nahum ;
Escobar, Manuel ;
Navarro-Martin, Arturo ;
Villacampa, Guillermo ;
Dienstmann, Rodrigo ;
Perez-Lopez, Raquel .
EUROPEAN RADIOLOGY, 2021, 31 (03) :1460-1470
[33]   Deep learning-based radiomics model can predict extranodal soft tissue metastasis in gastric cancer [J].
Liu, Shengyuan ;
Deng, Jingyu ;
Dong, Di ;
Fang, Mengjie ;
Ye, Zhaoxiang ;
Hu, Yanfeng ;
Li, Hailin ;
Zhong, Lianzhen ;
Cao, Runnan ;
Zhao, Xun ;
Shang, Wenting ;
Li, Guoxin ;
Liang, Han ;
Tian, Jie .
MEDICAL PHYSICS, 2024, 51 (01) :267-277
[34]   Application of CT texture analysis in predicting histopathological characteristics of gastric cancers [J].
Liu, Shunli ;
Liu, Song ;
Ji, Changfeng ;
Zheng, Huanhuan ;
Pan, Xia ;
Zhang, Yujuan ;
Guan, Wenxian ;
Chen, Ling ;
Guan, Yue ;
Li, Weifeng ;
He, Jian ;
Ge, Yun ;
Zhou, Zhengyang .
EUROPEAN RADIOLOGY, 2017, 27 (12) :4951-4959
[35]   Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up [J].
Lordick, F. ;
Carneiro, F. ;
Cascinu, S. ;
Fleitas, T. ;
Haustermans, K. ;
Piessen, G. ;
Vogel, A. ;
Smyth, E. C. ;
ESMO Guidelines Committee .
ANNALS OF ONCOLOGY, 2022, 33 (10) :1005-1020
[36]   A radiomics nomogram analysis based on CT images and clinical features for preoperative Lauren classification in gastric cancer [J].
Nie, Tingting ;
Liu, Dan ;
Ai, Shuangquan ;
He, Yaoyao ;
Yang, Miao ;
Chen, Jun ;
Yuan, Zilong ;
Liu, Yulin .
JAPANESE JOURNAL OF RADIOLOGY, 2023, 41 (04) :401-408
[37]   Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer [J].
Parmar, Chintan ;
Leijenaar, Ralph T. H. ;
Grossmann, Patrick ;
Velazquez, Emmanuel Rios ;
Bussink, Johan ;
Rietveld, Derek ;
Rietbergen, Michelle M. ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2015, 5
[38]   Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma [J].
Peng, Hao ;
Dong, Di ;
Fang, Meng-Jie ;
Li, Lu ;
Tang, Ling-Long ;
Chen, Lei ;
Li, Wen-Fei ;
Mao, Yan-Ping ;
Fan, Wei ;
Liu, Li-Zhi ;
Tian, Li ;
Lin, Ai-Hua ;
Sun, Ying ;
Tian, Jie ;
Ma, Jun .
CLINICAL CANCER RESEARCH, 2019, 25 (14) :4271-4279
[39]   Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance [J].
Pernot, Simon ;
Terme, Magali ;
Radosevic-Robin, Nina ;
Castan, Florence ;
Badoual, Cecile ;
Marcheteau, Elie ;
Penault-Llorca, Frederique ;
Bouche, Olivier ;
Bennouna, Jaafar ;
Francois, Eric ;
Ghiringhelli, Francois ;
De La Fouchardiere, Christelle ;
Samalin, Emmanuelle ;
Baptiste Bachet, Jean ;
Borg, Christophe ;
Boige, Valerie ;
Voron, Thibault ;
Stanbury, Trevor ;
Tartour, Eric ;
Gourgou, Sophie ;
Malka, David ;
Taieb, Julien .
GASTRIC CANCER, 2020, 23 (01) :73-81
[40]   Comparison of HER2 and Lauren Classification between Biopsy and Surgical Resection Samples, Primary and Metastatic Samples of Gastric Cancer [J].
Qiu, Miao-Zhen ;
Shi, Si-Mei ;
Chen, Min ;
Wang, Jing ;
Wu, Qi-Nian ;
Sheng, Hui ;
Zhang, Hui-Zhong ;
Yun, Jing-Ping ;
Zhou, Zhi-Wei ;
Wang, Feng-Hua ;
Yang, Da-Jun ;
Xu, Rui-Hua .
JOURNAL OF CANCER, 2017, 8 (17) :3531-3537