CT-based deep learning radiomics analysis for preoperative Lauren classification in gastric cancer and explore the tumor microenvironment

被引:0
作者
Cheng, Ming [1 ,2 ]
Guo, Yimin [3 ,4 ]
Zhao, Huiping [5 ]
Zhang, Hanyue [3 ,4 ]
Liang, Pan [3 ,4 ]
Gao, Jianbo [3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Med Informat, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[2] Inst Interconnected Intelligent Hlth Management He, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[4] Henan Key Lab Image Diag & Treatment Digest Syst T, Zhengzhou 450052, Henan, Peoples R China
[5] Shaanxi Prov Peoples Hosp, Dept Radiol, Xian 710068, Shaanxi, Peoples R China
关键词
Deep learning; Gastric cancer; Lauren classification; Radiomics nomogram; Tumor microenvironment; LYMPH-NODE METASTASIS; MOLECULAR CLASSIFICATION; PREDICTION; SURVIVAL; DISEASE; RECURRENCE; DIAGNOSIS; NOMOGRAM; MODEL;
D O I
10.1016/j.ejro.2025.100667
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This study aimed to investigate the usefulness of CT-based deep learning radiomics analysis (DLRA) for preoperatively differentiating Lauren classification in gastric cancer (GC) patients and explore the tumor microenvironment. Methods: 578 patients were recruited from January 2015 to June 2024, and divided into the training cohort (n = 311), the internal validation cohort (n = 132), and the external validation cohort (n = 135). Clinical characteristics were collected. Radiomics features were extracted from CT images at arterial phase (AP) and venous phase (VP). A radiomics nomogram incorporating radiomics signature and clinical information was built for distinguishing Lauren classification, and its discrimination, calibration, and clinical usefulness were evaluated. RNA sequencing data from The Cancer Imaging Archive database were used to perform transcriptomics analysis. Results: The nomogram incorporating the two radiomics signatures and clinical characteristics exhibited good discrimination of Lauren classification on all cohorts [overall C-indexes 0.815 (95 % CI: 0.739-0.869) in the training cohort, 0.785 (95 % CI: 0.702-0.834) in the internal validation cohort, 0.756 (95 % CI: 0.685-0.816) in the external validation cohort]. It outperformed the clinical model in predictive ability. The calibration and decision curve substantiated the model's excellent fitness and clinical applicability. Further, transcriptomics analysis showed that the differentially expressed genes of different Lauren types were mainly enriched in pathways related to cell contraction and migration, and the infiltration degree of various immune cells was also significantly different. Conclusions: DLRA effectively differentiated Lauren classification in GC, and our analysis of transcriptomic data across different Lauren subtypes revealed the heterogeneity within the GC microenvironment.
引用
收藏
页数:12
相关论文
共 59 条
[21]  
Hundahl SA, 2000, CANCER-AM CANCER SOC, V88, P921, DOI 10.1002/(SICI)1097-0142(20000215)88:4<921::AID-CNCR24>3.0.CO
[22]  
2-S
[23]   Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study [J].
Jiang, Yuming ;
Zhang, Zhicheng ;
Yuan, Qingyu ;
Wang, Wei ;
Wang, Hongyu ;
Li, Tuanjie ;
Huang, Weicai ;
Xie, Jingjing ;
Chen, Chuanli ;
Sun, Zepang ;
Yu, Jiang ;
Xu, Yikai ;
Poultsides, George A. ;
Xing, Lei ;
Zhou, Zhiwei ;
Li, Guoxin ;
Li, Ruijiang .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E340-E350
[24]   Lauren subtypes of advanced gastric cancer influence survival and response to chemotherapy: real-world data from the AGAMENON National Cancer Registry [J].
Jimenez Fonseca, Paula ;
Carmona-Bayonas, Alberto ;
Hernandez, Raquel ;
Custodio, Ana ;
Maria Cano, Juana ;
Lacalle, Alejandra ;
Echavarria, Isabel ;
Macias, Ismael ;
Mangas, Monserrat ;
Visa, Laura ;
Buxo, Elvira ;
Alvarez Mancenido, Felipe ;
Viudez, Antonio ;
Pericay, Carles ;
Azkarate, Aitor ;
Ramchandani, Avinash ;
Lopez, Carlos ;
Martinez de Castro, Eva ;
Fernandez Montes, Ana ;
Longo, Federico ;
Sanchez Bayona, Rodrigo ;
Luisa Limon, Maria ;
Diaz-Serrano, Asun ;
Martin Carnicero, Alfonso ;
Arias, David ;
Cerda, Paula ;
Rivera, Fernando ;
Maria Vieitez, Jose ;
Sanchez Canovas, Manuel ;
Garrido, M. ;
Gallego, J. .
BRITISH JOURNAL OF CANCER, 2017, 117 (06) :775-782
[25]   Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer [J].
Jin, C. ;
Jiang, Y. ;
Yu, H. ;
Wang, W. ;
Li, B. ;
Chen, C. ;
Yuan, Q. ;
Hu, Y. ;
Xu, Y. ;
Zhou, Z. ;
Li, G. ;
Li, R. .
BJS-BRITISH JOURNAL OF SURGERY, 2021, 108 (05) :542-549
[26]   Correlation of Primary Tumor FDG Uptake with Histopathologic Features of Advanced Gastric Cancer [J].
Kim H.W. ;
Won K.S. ;
Song B.-I. ;
Kang Y.N. .
Nuclear Medicine and Molecular Imaging, 2015, 49 (2) :135-142
[27]   Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks [J].
Lakhani, Paras ;
Sundaram, Baskaran .
RADIOLOGY, 2017, 284 (02) :574-582
[28]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[29]   Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer [J].
Li, Jing ;
Dong, Di ;
Fang, Mengjie ;
Wang, Rui ;
Tian, Jie ;
Li, Hailiang ;
Gao, Jianbo .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2324-2333
[30]   Preoperative prediction of Lauren classification in gastric cancer: a radiomics model based on dual-energy CT iodine map [J].
Li, Min ;
Qin, Hongtao ;
Yu, Xianbo ;
Sun, Junyi ;
Xu, Xiaosheng ;
You, Yang ;
Ma, Chongfei ;
Yang, Li .
INSIGHTS INTO IMAGING, 2023, 14 (01)