CT-based deep learning radiomics analysis for preoperative Lauren classification in gastric cancer and explore the tumor microenvironment

被引:0
作者
Cheng, Ming [1 ,2 ]
Guo, Yimin [3 ,4 ]
Zhao, Huiping [5 ]
Zhang, Hanyue [3 ,4 ]
Liang, Pan [3 ,4 ]
Gao, Jianbo [3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Med Informat, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[2] Inst Interconnected Intelligent Hlth Management He, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[4] Henan Key Lab Image Diag & Treatment Digest Syst T, Zhengzhou 450052, Henan, Peoples R China
[5] Shaanxi Prov Peoples Hosp, Dept Radiol, Xian 710068, Shaanxi, Peoples R China
关键词
Deep learning; Gastric cancer; Lauren classification; Radiomics nomogram; Tumor microenvironment; LYMPH-NODE METASTASIS; MOLECULAR CLASSIFICATION; PREDICTION; SURVIVAL; DISEASE; RECURRENCE; DIAGNOSIS; NOMOGRAM; MODEL;
D O I
10.1016/j.ejro.2025.100667
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This study aimed to investigate the usefulness of CT-based deep learning radiomics analysis (DLRA) for preoperatively differentiating Lauren classification in gastric cancer (GC) patients and explore the tumor microenvironment. Methods: 578 patients were recruited from January 2015 to June 2024, and divided into the training cohort (n = 311), the internal validation cohort (n = 132), and the external validation cohort (n = 135). Clinical characteristics were collected. Radiomics features were extracted from CT images at arterial phase (AP) and venous phase (VP). A radiomics nomogram incorporating radiomics signature and clinical information was built for distinguishing Lauren classification, and its discrimination, calibration, and clinical usefulness were evaluated. RNA sequencing data from The Cancer Imaging Archive database were used to perform transcriptomics analysis. Results: The nomogram incorporating the two radiomics signatures and clinical characteristics exhibited good discrimination of Lauren classification on all cohorts [overall C-indexes 0.815 (95 % CI: 0.739-0.869) in the training cohort, 0.785 (95 % CI: 0.702-0.834) in the internal validation cohort, 0.756 (95 % CI: 0.685-0.816) in the external validation cohort]. It outperformed the clinical model in predictive ability. The calibration and decision curve substantiated the model's excellent fitness and clinical applicability. Further, transcriptomics analysis showed that the differentially expressed genes of different Lauren types were mainly enriched in pathways related to cell contraction and migration, and the infiltration degree of various immune cells was also significantly different. Conclusions: DLRA effectively differentiated Lauren classification in GC, and our analysis of transcriptomic data across different Lauren subtypes revealed the heterogeneity within the GC microenvironment.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers [J].
Ahn, Hyein ;
Song, Geum Jong ;
Jang, Si-Hyong ;
Lee, Hyun Ju ;
Lee, Moon-Soo ;
Lee, Ji-Hye ;
Oh, Mee-Hye ;
Jeong, Geum Cheol ;
Lee, Sang Mi ;
Lee, Jeong Won .
CANCERS, 2022, 14 (16)
[2]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[3]   Diffuse Gastric Cancer: A Summary of Analogous Contributing Factors for Its Molecular Pathogenicity [J].
Ansari, Shamshul ;
Gantuya, Boldbaatar ;
Vo Phuoc Tuan ;
Yamaoka, Yoshio .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
[4]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[5]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[6]   Differences in clinicopathological characteristics and computed tomography findings between signet ring cell carcinoma and nonsignet ring cell carcinoma in early and advanced gastric cancer [J].
Chen, Jian ;
Cai, Rong ;
Ren, Gang ;
Zhao, Jianxi ;
Li, Huali ;
Guo, Chen ;
He, Wenguang ;
Wu, Xiangru ;
Zhang, Wenjie .
CANCER MEDICINE, 2018, 7 (04) :1160-1169
[7]   CT-based radiomics nomograms for preoperative prediction of diffuse-type and signet ring cell gastric cancer: a multicenter development and validation cohort [J].
Chen, Tao ;
Wu, Jing ;
Cui, Chunhui ;
He, Qinglie ;
Li, Xunjun ;
Liang, Weiqi ;
Liu, Xiaoyue ;
Liu, Tianbao ;
Zhou, Xuanhui ;
Zhang, Xifan ;
Lei, Xiaotian ;
Xiong, Wei ;
Yu, Jiang ;
Li, Guoxin .
JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
[8]   Clinicopathological Variation of Lauren Classification in Gastric Cancer [J].
Chen, Yun-Chi ;
Fang, Wen-Liang ;
Wang, Ruei-Fang ;
Liu, Chien-An ;
Yang, Muh-Hwa ;
Lo, Shu-Shun ;
Wu, Chew-Wen ;
Li, Anna Fen-Yau ;
Shyr, Yi-Ming ;
Huang, Kuo-Hung .
PATHOLOGY & ONCOLOGY RESEARCH, 2016, 22 (01) :197-202
[9]   Molecular classification of gastric cancer [J].
Chia, N. -Y. ;
Tan, P. .
ANNALS OF ONCOLOGY, 2016, 27 (05) :763-769
[10]   cytoHubba: identifying hub objects and sub-networks from complex interactome [J].
Chin, Chia-Hao ;
Chen, Shu-Hwa ;
Wu, Hsin-Hung ;
Ho, Chin-Wen ;
Ko, Ming-Tat ;
Lin, Chung-Yen .
BMC SYSTEMS BIOLOGY, 2014, 8