Second order regularity of solutions of elliptic equations in divergence form with Sobolev coefficients

被引:0
作者
Perelmuter, M. A. [1 ]
机构
[1] SCAD Soft Ltd, 3a Osvity, UA-03037 Kyiv, Ukraine
关键词
Elliptic operators; Second order regularity; Weak solutions; PDES;
D O I
10.1007/s10231-025-01569-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give L-p estimates for the second derivatives of weak solutions to the Dirichlet problem for equation div(A del u)=f in Omega subset of R-d with Sobolev coefficients. In particular, for f is an element of L-2(Omega)boolean AND L-s(Omega) ||Delta u||(2) <= { c(1)||f||(2)+c(2)||del A||(2)(q)||f||s, if 1<s<d/2,1/2=2/q+1/s-2/d c(1)||f||(2)+c(2)||del A||(2)(4)||f||s, if s>d/2.
引用
收藏
页数:7
相关论文
共 24 条
[1]  
Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
[2]  
Bohnlein T., 2024, Bull. Lond. Math. Soc, V56, P914, DOI [10.1112/blms.12973, DOI 10.1112/BLMS.12973]
[3]   BELTRAMI EQUATIONS WITH COEFFICIENT IN THE SOBOLEV SPACE W1,p [J].
Clop, A. ;
Faraco, D. ;
Mareu, J. ;
Orobitg, J. ;
Zhong, X. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (01) :197-230
[4]   Regularity results for weak solutions of elliptic PDEs below the natural exponent [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Rodney, Scott .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) :725-740
[5]  
DiFazio G, 1996, B UNIONE MAT ITAL, V10A, P409
[6]  
Evans LawrenceC., 2010, PARTIAL DIFFERENTIAL, V2nd, DOI [10.1090/gsm/019, DOI 10.1090/GSM/019]
[7]  
Gilbarg David., 2001, ELLIPTIC PARTIAL DIF, DOI [10.1007/978-3-642-61798-0, DOI 10.1007/978-3-642-61798-0]
[8]   Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients [J].
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (01) :85-110
[9]   Riesz transforms and elliptic PDEs with VMO coefficients [J].
Iwaniec, T ;
Sbordone, C .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 74 (1) :183-212
[10]   Quasiharmonic fields [J].
Iwaniec, T ;
Sbordone, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :519-572