Resolving Charge Recombination and Intermediate Stabilization: A Rational Design of In2O3/TiO2 S-Scheme Heterojunction for Efficient CH4 Production

被引:2
作者
Sun, Ming [1 ]
Ma, Yuerui [2 ]
Tan, Yuwei [1 ]
Wang, Jiacheng [1 ]
Mi, Guohua [1 ]
Luo, Jingying [1 ]
Wang, Chunhui [3 ]
Tong, Xin [1 ]
Zhao, Xiaoli [4 ]
Chen, Peng [2 ]
Huang, Ming [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
[2] Chongqing Normal Univ, Coll Chem, Chongqing Key Lab Green Synth & Applicat, Chongqing, Peoples R China
[3] Yunnan Univ, Natl Ctr Int Res Photoelect & Energy Mat, Sch Mat & Energy, Key Lab LCR Mat & Devices Yunnan Prov, Kunming 650091, Peoples R China
[4] Xihua Univ, Sch Mat Sci & Engn, Chengdu, Peoples R China
来源
SUSMAT | 2025年 / 5卷 / 04期
基金
中国国家自然科学基金;
关键词
CH4; production; charge transfer In2O3/TiO2 catalyst; photocatalytic CO2 reduction; S-scheme heterojunction; CO2; REDUCTION;
D O I
10.1002/sus2.70011
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic CO2 reduction to CH4 is regarded as one of the most promising strategies for mitigating environmental and energy challenges, offering a sustainable pathway toward achieving carbon neutrality. However, its practical application is hindered by low catalytic performance and product selectivity, primarily owing to inefficient electron transfer and insufficient stabilization of key reaction intermediates. Herein, an S-scheme heterojunction of In2O3/TiO(2 )is synthesized via a two-step method to enhance photogenerated charge carrier separation and transfer. The optimized photocatalyst demonstrates exceptional performance, achieving a CH4 yield of 64.1 mu mol g(-1) h(-1 )accompanied by an ultrahigh electron selectivity of 96.0%. The integration of density functional theory (DFT) calculations with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses demonstrates that the heterojunction significantly enhances CO2 activation, as evidenced by the upshifted d-band center and increased crystal orbital Hamilton population (COHP) values. Furthermore, the In2O3/TiO2 heterojunction exhibits enhanced adsorption of CO2 and key intermediates, thereby improving reaction kinetics and thermodynamics. These properties facilitate the hydrogenation of *COOH, ultimately promoting CH4 generation. This work not only provides a mechanistic understanding of S-scheme heterojunctions in CO2 photoreduction but also provides a new design strategy for developing highly efficient photocatalysts.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source [J].
Arcudi, Francesca ;
Dordevic, Luka ;
Schweitzer, Neil ;
Stupp, Samuel, I ;
Weiss, Emily A. .
NATURE CHEMISTRY, 2022, 14 (09) :1007-+
[2]   Photochromic single atom Ag/TiO2 catalysts for selective CO2 reduction to CH4 [J].
Ban, Chaogang ;
Wang, Yang ;
Feng, Yajie ;
Zhu, Zhouhao ;
Duan, Youyu ;
Ma, Jiangping ;
Zhang, Xu ;
Liu, Xue ;
Zhou, Kai ;
Zou, Hanjun ;
Yu, Danmei ;
Tao, Xiaoping ;
Gan, Liyong ;
Han, Guang ;
Zhou, Xiaoyuan .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (02) :518-530
[3]   S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction [J].
Chen, Gongjie ;
Zhou, Ziruo ;
Li, Bifang ;
Lin, Xiahui ;
Yang, Can ;
Fang, Yuanxing ;
Lin, Wei ;
Hou, Yidong ;
Zhang, Guigang ;
Wang, Sibo .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 :103-112
[4]   Advanced semiconductor catalyst designs for the photocatalytic reduction of CO2 [J].
Chen, Zhangsen ;
Zhang, Gaixia ;
Cao, Siyi ;
Chen, Guozhu ;
Li, Cuncheng ;
Izquierdo, Ricardo ;
Sun, Shuhui .
MATERIALS REPORTS: ENERGY, 2023, 3 (02)
[5]   An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism [J].
Cheng, Chang ;
He, Bowen ;
Fan, Jiajie ;
Cheng, Bei ;
Cao, Shaowen ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2021, 33 (22)
[6]   Unraveling the Influence of Oxygen Vacancy Concentration on Electrocatalytic CO2 Reduction to Formate over Indium Oxide Catalysts [J].
Cheng, Qin ;
Huang, Ming ;
Xiao, Lei ;
Mou, Shiyong ;
Zhao, Xiaoli ;
Xie, Yuqun ;
Jiang, Guodong ;
Jiang, Xinyue ;
Dong, Fan .
ACS CATALYSIS, 2023, 13 (06) :4021-4029
[7]   Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data-Driven Design [J].
Cheng, Shuwen ;
Sun, Zhehao ;
Lim, Kang Hui ;
Gani, Terry Zhi Hao ;
Zhang, Tianxi ;
Wang, Yisong ;
Yin, Hang ;
Liu, Kaili ;
Guo, Haiwei ;
Du, Tao ;
Liu, Liying ;
Li, Gang Kevin ;
Yin, Zongyou ;
Kawi, Sibudjing .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[8]   Graphene quantum dot-mediated anchoring of highly dispersed bismuth nanoparticles on porous graphene for enhanced electrocatalytic CO2 reduction to formate [J].
Cheng, Yi ;
Yang, Ruizhe ;
Xia, Lu ;
Zhao, Xiaoli ;
Tan, Yuwei ;
Sun, Ming ;
Li, Suming ;
Li, Fei ;
Huang, Ming .
NANOSCALE, 2024, 16 (05) :2373-2381
[9]   Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge [J].
Cho, Jin Hyuk ;
Ma, Joonhee ;
Kim, Soo Young .
EXPLORATION, 2023, 3 (05)
[10]   Valence state effect of Cu on photocatalytic CO2 reduction [J].
Dai, Fangxu ;
Zhang, Mingming ;
Li, Zhenjiang ;
Xing, Jun ;
Wang, Lei .
MATERIALS REPORTS: ENERGY, 2023, 3 (04)