Graphene Oxide in Bone Regenerative Engineering: Current Challenges and Future Perspectives

被引:0
作者
Hosseini, Fatemeh S. [1 ,2 ,3 ]
Kan, Ho-Man [1 ]
Whitfield, Taraje [1 ,2 ,3 ]
Argyrou, Chrysoula [1 ,2 ]
Abedini, Amir A. [1 ,4 ,5 ]
Allen, Nicholas S. [1 ]
Laurencin, Cato T. [1 ,2 ,6 ,7 ]
机构
[1] Univ Connecticut, Cato T Laurencin Inst Regenerat Engn, Farmington, CT 06030 USA
[2] Univ Connecticut Hlth, Dept Orthopaed Surg, Farmington, CT 06030 USA
[3] UConn Hlth, Dept Skeletal Biol & Regenerat, Farmington, CT 06030 USA
[4] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
[5] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[6] Univ Connecticut, Dept Biomed Engn, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[7] Univ Connecticut, Dept Chem & Bimol Engn, Storrs, CT 06269 USA
来源
ACS BIO & MED CHEM AU | 2025年 / 5卷 / 03期
关键词
Regenerative Engineering; Bone Regeneration; Scaffold; Graphene Oxide; Clinical Translation; Stem Cells; Osteogenic Differentiation; Regenerative; Oxygen Functional Groups; Composite Nanomaterials; IN-VITRO; COMPOSITE SCAFFOLDS; HYDROGEL; GELATIN; MICROENVIRONMENT; DIFFERENTIATION; HYDROXYAPATITE; OSTEOGENESIS; EXPRESSION; DELIVERY;
D O I
10.1021/acsbiomedchemau.4c00152
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Owing to its exceptional physicochemical and biological properties, graphene oxide (GO), the oxidized form of graphene, has attracted considerable interest in bone regenerative engineering. The oxygen-functional groups on the backbone of GO enable biomolecule adherence, protein adsorption, cell adhesion, proliferation, differentiation, calcium ion adsorption and bone matrix mineralization. These oxygen functional groups enhance GO's interaction with biological fluids, facilitating its hydrolytic biodegradation. Recent preclinical studies have indicated that GO effectively improves mechanical strength, immunomodulation, and osteoinduction when utilized within diverse matrix structures including natural and synthetic polymers and ceramics to induce osteogenesis. Advanced bone regenerative applications of GO, such as implant coating and delivery of bioactive compounds, have demonstrated enhanced osseointegration, antibacterial efficacy, and pro-healing microenvironments. However, there are still challenges regarding the high-quality large-scale synthesis and long-term biocompatibility of GO. Additionally, the variability in the characteristics of GO resulting from different synthesis methods demonstrates further challenges for therapeutic translation. This study provides a comprehensive review of the recent preclinical research on the translational potential of GO, discussing the convergence of its exceptional properties for use in bone regenerative engineering along with its current challenges and future perspectives.
引用
收藏
页码:350 / 364
页数:15
相关论文
共 125 条
[51]   Regenerative Engineering: From Convergence to Consilience Derivative [J].
Laurencin, Cato T. ;
Hosseini, Fatemeh S. ;
Daneshmandi, Leila .
REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2025, 11 (02) :299-311
[52]   Regenerative Engineering [J].
Laurencin, Cato T. ;
Khan, Yusuf .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (160)
[53]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[54]   A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair [J].
Li, Yongwei ;
He, Jiahui ;
Zhou, Junpeng ;
Li, Zhenlong ;
Liu, Liying ;
Hu, Shugang ;
Guo, Baolin ;
Wang, Wei .
BIOMATERIALS SCIENCE, 2022, 10 (05) :1326-1341
[55]   Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity [J].
Liao, Chengzhu ;
Li, Yuchao ;
Tjong, Sie Chin .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
[56]   Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway [J].
Lin, Ling ;
Zheng, Yexin ;
Wang, Chao ;
Li, Pei ;
Xu, Duoling ;
Zhao, Wei .
ACS OMEGA, 2023, :5393-5405
[57]   Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans [J].
Liu, Peidang ;
Shao, Huimin ;
Kong, Yan ;
Wang, Dayong .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2020, 88 :200-208
[58]   Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration [J].
Liu, Shaokai ;
Zhou, Chuchao ;
Mou, Shan ;
Li, Jialun ;
Zhou, Muran ;
Zeng, Yuyang ;
Luo, Chao ;
Sun, Jiaming ;
Wang, Zhenxing ;
Xu, Weihua .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 105
[59]   Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration [J].
Liu, Sudan ;
Li, Zirui ;
Wang, Qiuxiang ;
Han, Jing ;
Wang, Wenying ;
Li, Shenghui ;
Liu, Huifang ;
Guo, Shutao ;
Zhang, Jinchao ;
Ge, Kun ;
Zhou, Guoqiang .
ACS APPLIED BIO MATERIALS, 2021, 4 (11) :8049-8059
[60]   Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid [J].
Liu, Wenjing ;
Luo, Haiyun ;
Wei, Qinwei ;
Liu, Jia ;
Wu, Junrong ;
Zhang, Yanli ;
Chen, Lili ;
Ren, Wencai ;
Shao, Longquan .
BIOACTIVE MATERIALS, 2022, 9 :92-104