Carrier concentration dependence of optical and magnetic properties in epitaxial manganese-doped indium tin oxide films with different manganese concentrations

被引:0
作者
Kitagawa, Saiki [1 ,2 ,3 ]
Nakamura, Toshihiro [1 ,2 ]
机构
[1] Division of Materials Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto
[2] Department of Chemistry, Institute for Liberal Arts and Sciences, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto
[3] Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo
基金
日本学术振兴会;
关键词
Carrier concentration; Diluted magnetic semiconductor; Epitaxial growth; Hole doping; Indium tin oxide; Transparent conducting film;
D O I
10.1016/j.cap.2024.11.008
中图分类号
学科分类号
摘要
Epitaxial manganese-doped indium tin oxide (Mn-doped ITO) films with different Mn concentrations were deposited on single-crystal yttria-stabilized zirconia substrates using radio-frequency magnetron sputtering. The carrier concentration of the epitaxial Mn-doped ITO films could be controlled by changing the Mn doping concentration. The optical bandgaps of the films increased with the increase in the carrier concentration. Room-temperature ferromagnetism was observed in all films irrespective of the Mn concentration. The saturation magnetizations of the films increased with the increase in the carrier concentration, which suggests that delocalized charge carrier-mediated interaction model is one of the most probable mechanisms of the ferromagnetism in the Mn-doped ITO films. We found that the carrier concentration plays a crucial role in controlling optical and magnetic properties of the Mn-doped ITO films. The results of this study provide useful insight into the application of Mn-doped ITO films to ferromagnetic electrodes in spintronic devices. © 2024 Korean Physical Society
引用
收藏
页码:60 / 69
页数:9
相关论文
共 54 条
[1]  
Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287, pp. 1019-1022, (2000)
[2]  
Appelbaum I., Huang B., Monsma D.J., Electronic measurement and control of spin transport in silicon, Nature, 447, pp. 295-298, (2007)
[3]  
Chen L., Yang X., Yang F., Zhao J., Misuraca J., Xiong P., Molnar S., Enhancing the curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering, Nano Lett., 11, pp. 2584-2589, (2011)
[4]  
Ueda K., Tabata H., Kawai T., Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett., 79, pp. 988-990, (2011)
[5]  
Sharma P., Gupta A., Rao K.V., Owens F.J., Sharma R., Ahuja R., Guillen J.M.O., Johansson B., Gehring G.A., Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, Nat. Mater., 2, pp. 673-677, (2003)
[6]  
Buchholz D., Chang R., Song J., Katterson J., Room-temperature ferromagnetism in Cu-doped ZnO thin films, Appl. Phys. Lett., 87, (2005)
[7]  
Peng L., Zhang H.W., Wen Q.Y., Song Y.Q., Su H., John X., Origin of room-temperature ferromagnetism for cobalt-doped ZnO diluted magnetic semiconductor, Chin. Phys. Lett., 25, pp. 1438-1441, (2008)
[8]  
Hu Y.M., Li S.S., Kuang C.H., Han T.C., Yu C.C., Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films, J. Appl. Phys., 117, (2015)
[9]  
Satheesan M.K., Vani K., Kumar V., Acceptor-defect mediated room temperature ferromagnetism in (Mn<sup>2+</sup>, Nb<sup>5+</sup>) co-doped ZnO nanoparticles, Ceram. Int., 43, pp. 8098-8102, (2017)
[10]  
Singh S., Kumar V., Tyagi S., Saxena N., Khan Z.H., Kumar P., Room temperature ferromagnetism in metal oxides for spintronics: a comprehensive review, Opt. Quant. Electron., 55, (2023)