A Broadband Leaky-Wave Antenna With High Efficiency Based on Dielectric Ridged Parallel-Plate Waveguide

被引:0
作者
Zhu, Rui [1 ]
Zhao, Yiming [1 ]
Wang, Junhong [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Lightwave Technol, Key Lab All Opt Network & Adv Telecommun Network, Minist Educ, Beijing 100044, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2025年 / 24卷 / 05期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Dielectrics; Bandwidth; Broadband antennas; Broadband communication; Antennas; Propagation constant; Metals; Harmonic analysis; Antenna measurements; Cutoff frequency; Beam scanning; broadband; dielectric ridged parallel-plate waveguide; high efficiency; leaky-wave antenna (LWA); WIDE-BAND; COMPACT; ANGLE; BACKWARD;
D O I
10.1109/LAWP.2025.3535585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel leaky-wave antenna (LWA) with wide bandwidth and high efficiency based on dielectric ridged parallel-plate waveguide (DRPW) is proposed. The DRPW is constructed by placing a dielectric ridge into the parallel-plate waveguide, which combines both the wideband property of the parallel-plate waveguide and the field confining effect of dielectric ridge. The zero cutoff frequency of DRPW and flexible path design of radiation aperture make it an excellent fundamental waveguide for broadband LWA design. Based on DRPW, an LWA with extraordinary radiation performance is proposed, which achieves a single-beam operating bandwidth of 55.4%, and the simulated total in-band efficiency is over 92%. The antenna can realize a back-to-front scanning range of 67 degrees. The simple structure, low profile and high radiation performance make it a good candidate for wireless communication and detection in millimeter-wave applications.
引用
收藏
页码:1293 / 1297
页数:5
相关论文
共 38 条
[1]   Wideband Frequency Scanning Spoof Surface Plasmon Polariton Planar Antenna Based on Transmissive Phase Gradient Metasurface [J].
Chen, Hongya ;
Ma, Hua ;
Li, Yongfeng ;
Wang, Jiafu ;
Han, Yajuan ;
Yan, Mingbao ;
Qu, Shaobo .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (03) :463-467
[2]   Millimeter-Wave, High-Gain, Dielectric Resonator One-Dimensional Leaky-Wave Antenna [J].
Chen, Junjiang ;
Su, Jinlong ;
Liu, Weiyong ;
Hu, Fei .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (01) :199-203
[3]   Circularly Polarized Leaky-Wave Antennas Based on Periodically Arranged Rotated Right-Angle Triangular Microstrip Patches [J].
Du, Wen ;
Zhang, Chaoqun ;
Zhang, Jun .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (05) :4085-4093
[4]   Wide-Angle Spoof Surface Plasmon Polariton Leaky-Wave Antenna Exploiting Prefractal Structures With Backfire to Nearly Endfire Scanning [J].
Farokhipour, Ehsan ;
Sievert, Benedikt ;
Svejda, Jan Taro ;
Rennings, Andreas ;
Komjani, Nader ;
Erni, Daniel .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (12) :2507-2511
[5]   A Compact Full-Space Scanning Leaky-Wave Antenna With Stable Peak Gain [J].
Ge, Shangkun ;
Zhang, Qingfeng ;
Rashid, Amir Khurrum ;
Zhang, Yujie ;
Wang, Hong ;
Murch, Ross .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (10) :6924-6929
[6]   Leaky-Wave Antenna Array With a Power-Recycling Feeding Network for Radiation Efficiency Improvement [J].
Geng, Yunjie ;
Wang, Junhong ;
Li, Yujian ;
Li, Zheng ;
Chen, Meie ;
Zhang, Zhan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (05) :2689-2694
[7]  
Hansen W. W., 1940, U.S. Patent, Patent No. [2402622, US Patent 2,402,622]
[8]   Wideband and Low-Loss Beam-Scanning Circularly Polarized Antenna Based on Air-Filled SIW [J].
Hong, Rentang ;
Shi, Jiaqi ;
Guan, Dongfang ;
Cao, Wenquan ;
Qian, Zuping .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (07) :1254-1258
[9]  
Jackson D.R., 2008, Leaky-Wave Antennas, DOI [10.1002/9780470294154.ch7, DOI 10.1002/9780470294154.CH7]
[10]   Backward-to-Forward Wide-Angle Fast Beam-Scanning Leaky-Wave Antenna With Consistent Gain [J].
Jiang, Hao ;
Xu, Kuiwen ;
Zhang, Qingfeng ;
Yang, Yang ;
Karmokar, Debabrata K. ;
Chen, Shichang ;
Zhao, Peng ;
Wang, Gaofeng ;
Peng, Liang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (05) :2987-2992