The Application of Silicon-Based Schottky Infrared Photodetectors in Gas Detection

被引:0
作者
Dong, Yao-Han [1 ]
Su, Zih-Chun [1 ]
Chang, Ting-Kai [1 ]
Weng, Han-Shi [1 ]
Chen, Cheng-Lin [1 ]
Lin, Ching-Fuh [1 ,2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, 1,Sec 4,Roosevelt Rd, Taipei, Taiwan
来源
SILICON PHOTONICS XX | 2025年 / 13371卷
关键词
Non-dispersive infrared; silicon base photodetector; localized surface plasmon resonance; acetone; Schottky photodiode; BREATH ACETONE; DIAGNOSIS;
D O I
10.1117/12.3041988
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-dispersive infrared (NDIR) technology is a gas sensing method that utilizes mid-infrared spectroscopy for gas analysis and environmental monitoring, relying on characteristic absorption wavelengths caused by molecular vibrations. Due to bandgap limitations, developing silicon-based infrared detectors capable of detecting acetone at ppm levels with high sensitivity remains a significant challenge. In this study, we employed an inverted pyramid structure (IPS) to induce localized surface plasmon resonance (LSPR) in silicon-based Schottky devices, enabling the measurement of mid-infrared light. We then used the silicon-based Schottky infrared detector to detect acetone molecules (with a light source wavelength of 2.05 mu m), achieving measurement sensitivity below 50 ppm. The results confirm the high sensitivity of the device to infrared light signals and highlight its potential for future applications.
引用
收藏
页数:3
相关论文
共 9 条
[1]  
cdc.gov, About Us
[2]   Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days [J].
Diskin, AM ;
Spanel, P ;
Smith, D .
PHYSIOLOGICAL MEASUREMENT, 2003, 24 (01) :107-119
[3]   Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review [J].
Drmosh, Qasem A. ;
Alade, Ibrahim Olanrewaju ;
Qamar, Mohammad ;
Akbar, Sheikh .
CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (12) :1519-1538
[4]   Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review [J].
Ochoa-Munoz, Yasser H. ;
de Gutierrez, Ruby Mejia ;
Rodriguez-Paez, Jorge E. .
MOLECULES, 2023, 28 (03)
[5]   Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes [J].
Park, Sunghoon .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 :655-662
[6]   Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study [J].
Schwarz, K. ;
Pizzini, A. ;
Arendacka, B. ;
Zerlauth, K. ;
Filipiak, W. ;
Schmid, A. ;
Dzien, A. ;
Neuner, S. ;
Lechleitner, M. ;
Scholl-Buergi, S. ;
Miekisch, W. ;
Schubert, J. ;
Unterkofler, K. ;
Witkovsky, V. ;
Gastl, G. ;
Amann, A. .
JOURNAL OF BREATH RESEARCH, 2009, 3 (02)
[7]   Breath acetone analysis with miniaturized sample preparation device: In-needle preconcentration and subsequent determination by gas chromatography-mass spectroscopy [J].
Ueta, Ikuo ;
Saito, Yoshihiro ;
Hosoe, Masahiko ;
Okamoto, Mitsuyoshi ;
Ohkita, Hironobu ;
Shirai, Shingoro ;
Tamura, Hiroshi ;
Jinno, Kiyokatsu .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2009, 877 (24) :2551-2556
[8]   A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C [J].
Wang, Chuji ;
Mbi, Armstrong ;
Shepherd, Mark .
IEEE SENSORS JOURNAL, 2010, 10 (01) :54-63
[9]   Diagnosis of diabetes by image detection of breath using gas-sensitive laps [J].
Zhang, QT ;
Wang, P ;
Li, JP ;
Gao, XG .
BIOSENSORS & BIOELECTRONICS, 2000, 15 (5-6) :249-256