Probing phonon transport dynamics across an interface by electron microscopy

被引:2
作者
Liu, Fachen [1 ,2 ,3 ]
Mao, Ruilin [1 ,2 ]
Liu, Zhiqiang [4 ]
Du, Jinlong [2 ]
Gao, Peng [1 ,2 ,3 ,5 ,6 ,7 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing, Peoples R China
[2] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[4] Chinese Acad Sci, Res & Dev Ctr Solid State Lighting, Inst Semicond, Beijing, Peoples R China
[5] Tsientang Inst Adv Study, Hangzhou, Peoples R China
[6] Peking Univ, Interdisciplinary Inst Light Element Quantum Mat, Res Ctr Light Element Adv Mat, Beijing, Peoples R China
[7] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
THERMAL-RESISTANCE; GRAPHENE; SCATTERING; WATER;
D O I
10.1038/s41586-025-09108-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding thermal transport mechanisms across material interfaces is crucial for advancing semiconductor technologies, particularly in miniaturized devices operating under extreme power densities1,2. Although the interface phonon-mediated processes are theoretically established3, 4, 5-6 as the dominant mechanism for interfacial thermal transport in semiconductors7, their nanoscale dynamics remain experimentally elusive owing to challenges in measuring the temperature and non-equilibrium phonon distributions across the buried interface8, 9, 10-11. Here we overcome these limitations by using in situ vibrational electron energy-loss spectroscopy (EELS) in an electron microscope to nanoscale profile temperature gradients across the AlN-SiC interface during thermal transport and map its non-equilibrium phonon occupations at sub-nanometre resolution. We observe a sharp temperature drop within about 2 nm across the interface, enabling direct extraction of relative interfacial thermal resistance (ITR). During thermal transport, the mismatch of phonon modes' thermal conductivity at the interface causes substantial non-equilibrium phonons nearby, making the populations of interface modes different under forward and reverse heat flow and also leading to marked changes in the modal temperature of AlN optical phonons within about 3 nm of the interface. These results reveal the phonon transport dynamics at the (sub-)nanoscale and establish the inelastic phonon scattering mechanism involved by interface modes, offering valuable insights into the engineering of thermal interfaces.
引用
收藏
页码:941 / 946
页数:9
相关论文
共 75 条
[1]   Generalized Two-Temperature Model for Coupled Phonons in Nanosized Graphene [J].
An, Meng ;
Song, Qichen ;
Yu, Xiaoxiang ;
Meng, Han ;
Ma, Dengke ;
Li, Ruiyang ;
Jin, Zelin ;
Huang, Baoling ;
Yang, Nuo .
NANO LETTERS, 2017, 17 (09) :5805-5810
[2]   Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids [J].
Barbalinardo, Giuseppe ;
Chen, Zekun ;
Lundgren, Nicholas W. ;
Donadio, Davide .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (13)
[3]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[4]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[5]  
Chen G., 2005, PAPPAL SER MECH ENG
[6]   Interfacial thermal resistance: Past, present, and future [J].
Chen, Jie ;
Xu, Xiangfan ;
Zhou, Jun ;
Li, Baowen .
REVIEWS OF MODERN PHYSICS, 2022, 94 (02)
[7]  
Chen Z, 2021, NAT COMMUN, V12, DOI [10.1038/s41467-021-26434-1, 10.1038/s41467-021-27250-3]
[8]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[9]   Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution [J].
Dwyer, C. ;
Aoki, T. ;
Rez, P. ;
Chang, S. L. Y. ;
Lovejoy, T. C. ;
Krivanek, O. L. .
PHYSICAL REVIEW LETTERS, 2016, 117 (25)
[10]  
Egerton R.F., 2011, Electron Energy-Loss Spectroscopy in the Electron Microscope, V3rd, DOI [10.1007/978-1-4419-9583-4, DOI 10.1007/978-1-4419-9583-4]