A Clinical-Radiomics Nomogram for the Preoperative Prediction of Aggressive Micropapillary and a Solid Pattern in Lung Adenocarcinoma

被引:0
作者
Xie, Xiangyu [1 ,2 ]
Chen, Lei [1 ,2 ]
Li, Kun [1 ,2 ]
Shi, Liang [1 ,2 ]
Zhang, Lei [1 ,2 ]
Zheng, Liang [1 ,2 ]
机构
[1] Soochow Univ, Peoples Hosp Changzhou 1, Dept Thorac Surg, Changzhou 213000, Peoples R China
[2] Soochow Univ, Affiliated Hosp 3, Changzhou 213000, Peoples R China
关键词
lung adenocarcinoma; radiomics; clinical independent factors; micropapillary and solid patterns; TUMOR HETEROGENEITY; TEXTURE ANALYSIS; CANCER; NODULES; SUBTYPES;
D O I
10.3390/curroncol32060323
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: A micropapillary pattern (MP) and solid pattern (SP) in lung adenocarcinoma (LUAD), a major subtype of non-small-cell lung cancer (NSCLC), are associated with a poor prognosis and necessitate accurate preoperative identification. This study aimed to develop and validate a predictive model combining clinical and radiomics features for differentiating a high-risk MP/SP in LUAD. Methods: This retrospective study analyzed 180 surgically confirmed NSCLC patients (Stages I-IIIA), randomly divided into training (70%, n = 126) and validation (30%, n = 54) cohorts. Three prediction models were constructed: (1) a clinical model based on independent clinical and CT morphological features (e.g., nodule size, lobulation, spiculation, pleural indentation, and vascular abnormalities), (2) a radiomics model utilizing LASSO-selected features extracted using 3D Slicer, and (3) a comprehensive model integrating both clinical and radiomics data. Results: The clinical model yielded AUCs of 0.7975 (training) and 0.8462 (validation). The radiomics model showed superior performance with AUCs of 0.8896 and 0.8901, respectively. The comprehensive model achieved the highest diagnostic accuracy, with training and validation AUCs of 0.9186 and 0.9396, respectively (DeLong test, p < 0.05). Decision curve analysis demonstrated the enhanced clinical utility of the combined approach. Conclusions: Integrating clinical and radiomics features significantly improves the preoperative identification of aggressive NSCLC patterns. The comprehensive model offers a promising tool for guiding surgical and adjuvant therapy decisions.
引用
收藏
页数:16
相关论文
共 42 条
[11]   Joint EANM/SNMMI guideline on radiomics in nuclear medicine Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council [J].
Hatt, M. ;
Krizsan, A. K. ;
Rahmim, A. ;
Bradshaw, T. J. ;
Costa, P. F. ;
Forgacs, A. ;
Seifert, R. ;
Zwanenburg, A. ;
El Naqa, I ;
Kinahan, P. E. ;
Tixier, F. ;
Jha, A. K. ;
Visvikis, D. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (02) :352-375
[12]   Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data [J].
Holzinger, Andreas ;
Haibe-Kains, Benjamin ;
Jurisica, Igor .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2722-2730
[13]   The Effect of CT Scan Parameters on the Measurement of CT Radiomic Features: A Lung Nodule Phantom Study [J].
Kim, Young Jae ;
Lee, Hyun-Ju ;
Kim, Kwang Gi ;
Lee, Seung Hyun .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
[14]   Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery [J].
Kirienko, Margarita ;
Cozzi, Luca ;
Antunovic, Lidija ;
Lozza, Lisa ;
Fogliata, Antonella ;
Voulaz, Emanuele ;
Rossi, Alexia ;
Chiti, Arturo ;
Sollini, Martina .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (02) :207-217
[15]   Radiomics: the process and the challenges [J].
Kumar, Virendra ;
Gu, Yuhua ;
Basu, Satrajit ;
Berglund, Anders ;
Eschrich, Steven A. ;
Schabath, Matthew B. ;
Forster, Kenneth ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Fenstermacher, David ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Lambin, Philippe ;
Balagurunathan, Yoganand ;
Gatenby, Robert A. ;
Gillies, Robert J. .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1234-1248
[16]   Squamous cell lung cancer: Current landscape and future therapeutic options [J].
Lau, Sally C. M. ;
Pan, Yuanwang ;
Velcheti, Vamsidhar ;
Wong, Kwok Kin .
CANCER CELL, 2022, 40 (11) :1279-1293
[17]   Advances and challenges in the treatment of lung cancer [J].
Li, Yuting ;
Yan, Bingshuo ;
He, Shiming .
BIOMEDICINE & PHARMACOTHERAPY, 2023, 169
[18]   Serum tumor markers level and their predictive values for solid and micropapillary components in lung adenocarcinoma [J].
Li, Zhihua ;
Wu, Weibing ;
Pan, Xianglong ;
Li, Fang ;
Zhu, Quan ;
He, Zhicheng ;
Chen, Liang .
CANCER MEDICINE, 2022, 11 (14) :2855-2864
[19]   Reticulation Sign on Thin-Section CT: Utility for Predicting Invasiveness of Pure Ground-Glass Nodules [J].
Liang, Zhang-Rui ;
Lv, Fa-Jin ;
Fu, Bin-Jie ;
Lin, Rui-Yu ;
Li, Wang-Jia ;
Chu, Zhi-Gang .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 221 (01) :69-78
[20]   CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges [J].
Lubner, Meghan G. ;
Smith, Andrew D. ;
Sandrasegaran, Kumar ;
Sahani, Dushyant V. ;
Pickhardt, Perry J. .
RADIOGRAPHICS, 2017, 37 (05) :1483-U304