A New Class of IMSE-Based Criteria for Optimal Designs in Multi-response Random Coefficient Regression Models

被引:0
作者
He, Lei [1 ]
Yue, Rong-Xian [2 ,3 ]
机构
[1] Anhui Normal Univ, Dept Stat, Wuhu 241003, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Fuyao Univ Sci & Technol, Sch Arts & Sci, Fuzhou 350109, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal designs; Integrated mean squared error matrix; IMSE-optimality; Prediction; Mixed effects model; PREDICTION; MINIMAX;
D O I
10.1007/s40304-024-00426-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new class of criteria for optimal designs in random coefficient regression (RCR) models with r responses is presented, which is based on the integrated mean squared error (IMSE) for the prediction of random effects. This class, referred to as IMSEr,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{IMSE}_{r,L}$$\end{document}-class of criteria, is invariant with respect to different parameterizations of the model and contains IMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{IMSE}$$\end{document}- and G-optimality as special cases for the prediction in univariate response situations. General equivalence theorems for IMSEr,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{IMSE}_{r,L}$$\end{document}-criteria are established for L is an element of[1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in [1,\infty )$$\end{document} and L=infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=\infty $$\end{document}, respectively, which are used to check IMSEr,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{IMSE}_{r,L}$$\end{document}-optimality of designs. IMSEr,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{IMSE}_{r,L}$$\end{document}-optimal designs for linear and quadratic bi-response RCR models are given for illustration.
引用
收藏
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1983, Bayesian Estimation and Experimental Design in Linear Regression Models
[2]  
Christensen R., 2002, Plane Answers to Complex Questions: The Theory of Linear Models, DOI [10.1007/978-0-387-21544-0, DOI 10.1007/978-0-387-21544-0]
[3]  
Danskin John M., 1967, The Theory of MaxMin and Its Application to Weapons Allocation Problems, V5, DOI DOI 10.1007/978-3-642-46092-0
[4]   Optimality criteria for regression models based on predicted variance [J].
Dette, H ;
O'Brien, TE .
BIOMETRIKA, 1999, 86 (01) :93-106
[5]  
Fedorov VV., 1997, Model-Oriented Design of Experiments, DOI [10.1007/978-1-4612-0703-0, DOI 10.1007/978-1-4612-0703-0]
[6]  
Gladitz J., 1982, Statistics, V13, P371
[7]   THE ESTIMATION OF ENVIRONMENTAL AND GENETIC TRENDS FROM RECORDS SUBJECT TO CULLING [J].
HENDERSON, CR ;
KEMPTHORNE, O ;
SEARLE, SR ;
VONKROSIGK, CM .
BIOMETRICS, 1959, 15 (02) :192-218
[8]   BEST LINEAR UNBIASED ESTIMATION AND PREDICTION UNDER A SELECTION MODEL [J].
HENDERSON, CR .
BIOMETRICS, 1975, 31 (02) :423-447
[9]   Implementation of multivariate linear mixed-effects models in the analysis of indoor climate performance experiments [J].
Jensen, Kasper L. ;
Spiild, Henrik ;
Toftum, Jorn .
INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2012, 56 (01) :129-136
[10]   D-OPTIMAL DESIGNS FOR A MULTIVARIATE REGRESSION-MODEL [J].
KRAFFT, O ;
SCHAEFER, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 42 (01) :130-140