Inferring Parameters in a Complex Land Surface Model by Combining Data Assimilation and Machine Learning

被引:0
作者
Keetz, L. T. [1 ,2 ]
Aalstad, K. [1 ]
Fisher, R. A. [3 ]
Poppe Teran, C. [4 ,5 ]
Naz, B. [4 ]
Pirk, N. [1 ]
Yilmaz, Y. A. [1 ]
Skarpaas, O. [2 ]
机构
[1] Univ Oslo, Dept Geosci, Oslo, Norway
[2] Univ Oslo, Nat Hist Museum, Oslo, Norway
[3] CICERO Ctr Int Climate Res, Oslo, Norway
[4] Res Ctr Julich, Inst Bioand Geosci Agrosphere IBG 3, Julich, Germany
[5] Rheinisch Westfalische TH RWTH, Fac Georesources & Mat Engn, Inst Bldg Mat Res, Aachen, Germany
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
machine learning; data assimilation; Bayesian inference; land surface model; dynamic vegetation model; parameter estimation; DYNAMIC VEGETATION MODEL; FLUX MEASUREMENTS; CARBON-CYCLE; BAYESIAN CALIBRATION; STOMATAL CONDUCTANCE; ECOSYSTEM MODEL; FOREST; SYSTEM; NITROGEN; CLIMATE;
D O I
10.1029/2024MS004542
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Complex Land Surface Models (LSMs) rely on a plethora of parameters. These parameters and the associated process formulations are often poorly constrained, which hampers reliable predictions of ecosystem dynamics and climate feedbacks. Robust and uncertainty-aware parameter estimation with observations is complicated by, for example, the high dimensionality of the model parameter space and the computational cost of LSM simulations. Herein, we adapt a novel Bayesian data assimilation (DA) and machine learning framework termed "calibrate, emulate, sample" (CES) to infer parameters in a widely-used LSM coupled with a demographic vegetation model (CLM-FATES). First, an iterative ensemble Kalman smoother provides an initial estimate of the posterior distribution ("calibrate"). Subsequently, a machine-learning-based emulator is trained on the resulting model-observation mismatches to predict outcomes for unseen parameter combinations ("emulate"). Finally, this emulator replaces CLM-FATES simulations in an adaptive Markov Chain Monte Carlo approach enabling computationally feasible posterior sampling with enhanced uncertainty quantification ("sample"). We test our implementation with synthetic and real observations representing a boreal forest site in southern Finland. We estimate a total of six plant-functional-type-specific photosynthetic parameters by assimilating evapotranspiration (ET) and gross primary production (GPP) flux data. CES provided the best estimates of the synthetic truth parameters when compared to data-blind emulator sampling designs while all approaches reduced model-observation errors compared to a default parameter simulation (GPP: -10 ${-}10$% to -30 ${-}30$%, ET: -4 ${-}4$% to -6 ${-}6$%). Although errors were also consistently reduced with real data, comparing the emulator designs was less conclusive, which we mainly attribute to equifinality, structural uncertainty within CLM-FATES, and/or unknown errors in the data that are not accounted for.
引用
收藏
页数:32
相关论文
共 139 条
[41]  
Fisher R. A., 2023, FATES technical documentation, DOI [10.5281/ZENODO.3517271, DOI 10.5281/ZENODO.3517271]
[42]   Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems [J].
Fisher, Rosie A. ;
Koven, Charles D. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (04)
[43]   Global Carbon Budget 2022 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Gregor, Luke ;
Hauck, Judith ;
Le Quere, Corinne ;
Luijkx, Ingrid T. ;
Olsen, Are ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Schwingshackl, Clemens ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone R. ;
Alkama, Ramdane ;
Arneth, Almut ;
Arora, Vivek K. ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Bittig, Henry C. ;
Bopp, Laurent ;
Chevallier, Frederic ;
Chini, Louise P. ;
Cronin, Margot ;
Evans, Wiley ;
Falk, Stefanie ;
Feely, Richard A. ;
Gasser, Thomas ;
Gehlen, Marion ;
Gkritzalis, Thanos ;
Gloege, Lucas ;
Grassi, Giacomo ;
Gruber, Nicolas ;
Gurses, Ozgur ;
Harris, Ian ;
Hefner, Matthew ;
Houghton, Richard A. ;
Hurtt, George C. ;
Iida, Yosuke ;
Ilyina, Tatiana ;
Jain, Atul K. ;
Jersild, Annika ;
Kadono, Koji ;
Kato, Etsushi ;
Kennedy, Daniel .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (11) :4811-4900
[44]   Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler [J].
Garbuno-Inigo, Alfredo ;
Hoffmann, Franca ;
Li, Wuchen ;
Stuart, Andrew M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01) :412-441
[45]  
Gelman A., 2014, Bayesian Data Analysis, Vthird
[46]   Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer [J].
Groenke, Brian ;
Langer, Moritz ;
Nitzbon, Jan ;
Westermann, Sebastian ;
Gallego, Guillermo ;
Boike, Julia .
CRYOSPHERE, 2023, 17 (08) :3505-3533
[47]  
Guidicelli M., 2023, PREPRINT, DOI [10.2139/ssrn.4489553, DOI 10.2139/SSRN.4489553]
[48]   An adaptive Metropolis algorithm [J].
Haario, H ;
Saksman, E ;
Tamminen, J .
BERNOULLI, 2001, 7 (02) :223-242
[49]  
Hari P, 2005, BOREAL ENVIRON RES, V10, P315
[50]   Eco-evolutionary optimality as a means to improve vegetation and land-surface models [J].
Harrison, Sandy P. ;
Cramer, Wolfgang ;
Franklin, Oskar ;
Prentice, Iain Colin ;
Wang, Han ;
Brannstrom, Ake ;
de Boer, Hugo ;
Dieckmann, Ulf ;
Joshi, Jaideep ;
Keenan, Trevor F. ;
Lavergne, Alienor ;
Manzoni, Stefano ;
Mengoli, Giulia ;
Morfopoulos, Catherine ;
Penuelas, Josep ;
Pietsch, Stephan ;
Rebel, Karin T. ;
Ryu, Youngryel ;
Smith, Nicholas G. ;
Stocker, Benjamin D. ;
Wright, Ian J. .
NEW PHYTOLOGIST, 2021, 231 (06) :2125-2141