Inferring Parameters in a Complex Land Surface Model by Combining Data Assimilation and Machine Learning

被引:0
作者
Keetz, L. T. [1 ,2 ]
Aalstad, K. [1 ]
Fisher, R. A. [3 ]
Poppe Teran, C. [4 ,5 ]
Naz, B. [4 ]
Pirk, N. [1 ]
Yilmaz, Y. A. [1 ]
Skarpaas, O. [2 ]
机构
[1] Univ Oslo, Dept Geosci, Oslo, Norway
[2] Univ Oslo, Nat Hist Museum, Oslo, Norway
[3] CICERO Ctr Int Climate Res, Oslo, Norway
[4] Res Ctr Julich, Inst Bioand Geosci Agrosphere IBG 3, Julich, Germany
[5] Rheinisch Westfalische TH RWTH, Fac Georesources & Mat Engn, Inst Bldg Mat Res, Aachen, Germany
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
machine learning; data assimilation; Bayesian inference; land surface model; dynamic vegetation model; parameter estimation; DYNAMIC VEGETATION MODEL; FLUX MEASUREMENTS; CARBON-CYCLE; BAYESIAN CALIBRATION; STOMATAL CONDUCTANCE; ECOSYSTEM MODEL; FOREST; SYSTEM; NITROGEN; CLIMATE;
D O I
10.1029/2024MS004542
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Complex Land Surface Models (LSMs) rely on a plethora of parameters. These parameters and the associated process formulations are often poorly constrained, which hampers reliable predictions of ecosystem dynamics and climate feedbacks. Robust and uncertainty-aware parameter estimation with observations is complicated by, for example, the high dimensionality of the model parameter space and the computational cost of LSM simulations. Herein, we adapt a novel Bayesian data assimilation (DA) and machine learning framework termed "calibrate, emulate, sample" (CES) to infer parameters in a widely-used LSM coupled with a demographic vegetation model (CLM-FATES). First, an iterative ensemble Kalman smoother provides an initial estimate of the posterior distribution ("calibrate"). Subsequently, a machine-learning-based emulator is trained on the resulting model-observation mismatches to predict outcomes for unseen parameter combinations ("emulate"). Finally, this emulator replaces CLM-FATES simulations in an adaptive Markov Chain Monte Carlo approach enabling computationally feasible posterior sampling with enhanced uncertainty quantification ("sample"). We test our implementation with synthetic and real observations representing a boreal forest site in southern Finland. We estimate a total of six plant-functional-type-specific photosynthetic parameters by assimilating evapotranspiration (ET) and gross primary production (GPP) flux data. CES provided the best estimates of the synthetic truth parameters when compared to data-blind emulator sampling designs while all approaches reduced model-observation errors compared to a default parameter simulation (GPP: -10 ${-}10$% to -30 ${-}30$%, ET: -4 ${-}4$% to -6 ${-}6$%). Although errors were also consistently reduced with real data, comparing the emulator designs was less conclusive, which we mainly attribute to equifinality, structural uncertainty within CLM-FATES, and/or unknown errors in the data that are not accounted for.
引用
收藏
页数:32
相关论文
共 139 条
[11]   Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J].
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 2003, 9 (04) :479-492
[12]  
BALL JT, 1987, PROGR PHOTOSYNTHESIS, P221, DOI DOI 10.1007/978-94-017-0519-6_48
[13]   The use of Bayesian priors in Ecology: The good, the bad and the not great [J].
Banner, Katharine M. ;
Irvine, Kathryn M. ;
Rodhouse, Thomas J. .
METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (08) :882-889
[14]   A comparative analysis of gradient boosting algorithms [J].
Bentejac, Candice ;
Csorgo, Anna ;
Martinez-Munoz, Gonzalo .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (03) :1937-1967
[15]   A manifesto for the equifinality thesis [J].
Beven, K .
JOURNAL OF HYDROLOGY, 2006, 320 (1-2) :18-36
[16]   Moving beyond the incorrect but useful paradigm: reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes - a review [J].
Bonan, Gordon B. ;
Patton, Edward G. ;
Finnigan, John J. ;
Baldocchi, Dennis D. ;
Harman, Ian N. .
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 306
[17]   Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models [J].
Bonan, Gordon B. ;
Doney, Scott C. .
SCIENCE, 2018, 359 (6375) :533-+
[18]   Issues in calibrating models with multiple unbalanced constraints: the significance of systematic model and data errors [J].
Cameron, David ;
Hartig, Florian ;
Minnuno, Francesco ;
Oberpriller, Johannes ;
Reineking, Bjorn ;
Van Oijen, Marcel ;
Dietze, Michael .
METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (12) :2757-2770
[19]   Data assimilation in the geosciences: An overview of methods, issues, and perspectives [J].
Carrassi, Alberto ;
Bocquet, Marc ;
Bertino, Laurent ;
Evensen, Geir .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2018, 9 (05)
[20]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794