Inferring Parameters in a Complex Land Surface Model by Combining Data Assimilation and Machine Learning

被引:0
作者
Keetz, L. T. [1 ,2 ]
Aalstad, K. [1 ]
Fisher, R. A. [3 ]
Poppe Teran, C. [4 ,5 ]
Naz, B. [4 ]
Pirk, N. [1 ]
Yilmaz, Y. A. [1 ]
Skarpaas, O. [2 ]
机构
[1] Univ Oslo, Dept Geosci, Oslo, Norway
[2] Univ Oslo, Nat Hist Museum, Oslo, Norway
[3] CICERO Ctr Int Climate Res, Oslo, Norway
[4] Res Ctr Julich, Inst Bioand Geosci Agrosphere IBG 3, Julich, Germany
[5] Rheinisch Westfalische TH RWTH, Fac Georesources & Mat Engn, Inst Bldg Mat Res, Aachen, Germany
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
machine learning; data assimilation; Bayesian inference; land surface model; dynamic vegetation model; parameter estimation; DYNAMIC VEGETATION MODEL; FLUX MEASUREMENTS; CARBON-CYCLE; BAYESIAN CALIBRATION; STOMATAL CONDUCTANCE; ECOSYSTEM MODEL; FOREST; SYSTEM; NITROGEN; CLIMATE;
D O I
10.1029/2024MS004542
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Complex Land Surface Models (LSMs) rely on a plethora of parameters. These parameters and the associated process formulations are often poorly constrained, which hampers reliable predictions of ecosystem dynamics and climate feedbacks. Robust and uncertainty-aware parameter estimation with observations is complicated by, for example, the high dimensionality of the model parameter space and the computational cost of LSM simulations. Herein, we adapt a novel Bayesian data assimilation (DA) and machine learning framework termed "calibrate, emulate, sample" (CES) to infer parameters in a widely-used LSM coupled with a demographic vegetation model (CLM-FATES). First, an iterative ensemble Kalman smoother provides an initial estimate of the posterior distribution ("calibrate"). Subsequently, a machine-learning-based emulator is trained on the resulting model-observation mismatches to predict outcomes for unseen parameter combinations ("emulate"). Finally, this emulator replaces CLM-FATES simulations in an adaptive Markov Chain Monte Carlo approach enabling computationally feasible posterior sampling with enhanced uncertainty quantification ("sample"). We test our implementation with synthetic and real observations representing a boreal forest site in southern Finland. We estimate a total of six plant-functional-type-specific photosynthetic parameters by assimilating evapotranspiration (ET) and gross primary production (GPP) flux data. CES provided the best estimates of the synthetic truth parameters when compared to data-blind emulator sampling designs while all approaches reduced model-observation errors compared to a default parameter simulation (GPP: -10 ${-}10$% to -30 ${-}30$%, ET: -4 ${-}4$% to -6 ${-}6$%). Although errors were also consistently reduced with real data, comparing the emulator designs was less conclusive, which we mainly attribute to equifinality, structural uncertainty within CLM-FATES, and/or unknown errors in the data that are not accounted for.
引用
收藏
页数:32
相关论文
共 139 条
[1]   Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites [J].
Aalstad, Kristoffer ;
Westermann, Sebastian ;
Schuler, Thomas Vikhamar ;
Boike, Julia ;
Bertino, Laurent .
CRYOSPHERE, 2018, 12 (01) :247-270
[2]   Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation [J].
Alonso-Gonzalez, Esteban ;
Aalstad, Kristoffer ;
Pirk, Norbert ;
Mazzolini, Marco ;
Treichler, Desiree ;
Leclercq, Paul ;
Westermann, Sebastian ;
Lopez-Moreno, Juan Ignacio ;
Gascoin, Simon .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (24) :4637-4659
[3]   The Multiple Snow Data Assimilation System (MuSA v1.0) [J].
Alonso-Gonzalez, Esteban ;
Aalstad, Kristoffer ;
Baba, Mohamed Wassim ;
Revuelto, Jesus ;
Ignacio Lopez-Moreno, Juan ;
Fiddes, Joel ;
Essery, Richard ;
Gascoin, Simon .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (24) :9127-9155
[4]   Fast likelihood-free cosmology with neural density estimators and active learning [J].
Alsing, Justin ;
Charnock, Tom ;
Feeney, Stephen ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (03) :4440-4458
[5]  
[Anonymous], 1993, Probabilistic inference using markov chain monte carlo methods
[6]   Dynamic Global Vegetation Models: Searching for the balance between demographic process representation and computational tractability [J].
Argles, Arthur P. K. ;
Moore, Jonathan R. ;
Cox, Peter M. .
PLOS CLIMATE, 2022, 1 (09)
[7]  
ARNOLD CP, 1986, B AM METEOROL SOC, V67, P687, DOI 10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO
[8]  
2
[9]   Eddy covariance CO2 flux measurements in nocturnal conditions:: An analysis of the problem [J].
Aubinet, Marc .
ECOLOGICAL APPLICATIONS, 2008, 18 (06) :1368-1378
[10]   Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model [J].
Bacour, C. ;
Peylin, P. ;
MacBean, N. ;
Rayner, P. J. ;
Delage, F. ;
Chevallier, F. ;
Weiss, M. ;
Demarty, J. ;
Santaren, D. ;
Baret, F. ;
Berveiller, D. ;
Dufrene, E. ;
Prunet, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (09) :1839-1857