SEMI-CONTRANS: SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION VIA MULTI-SCALE FEATURE FUSION AND CROSS TEACHING OF CNN AND TRANSFORMER

被引:1
作者
Zhao, Weiren [1 ]
Zhong, Lanfeng [2 ,3 ]
Wang, Guotai [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; CNN; Transformer; Attention;
D O I
10.1109/ISBI56570.2024.10635274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNNs) and Transformers have achieved promising results in fully supervised medical image segmentation. However, acquiring high-quality annotations for medical images is prohibitively expensive, making semi-supervised learning a promising way to reduce the annotation cost by leveraging both labeled and unlabeled images for training. In this work, we propose a novel model named Semi-ConTrans that unifies the advantages of CNNs and Transformers through multi-scale feature fusion and cross teaching for semi-supervised segmentation. Specifically, to leverage localization capability from CNNs and global context modeling of self-attention in Transformers in a unified framework, we adaptively fuse them at multiple scales in the encoder. Furthermore, we use a CNN decoder and a Transformer decoder with different decision boundaries for cross teaching, obtaining more holistic pseudo labels for dealing with unlabeled images. Experiments on the ACDC dataset of cardiac images demonstrate that our approach greatly improves the performance with only 10% or 20% labeled images by exploiting unlabeled images, outperforming eight state-of-the-art semi-supervised segmentation methods.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[2]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[3]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[4]  
Dosovitskiy Alexey, 2021, ICRL
[5]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[6]  
Liang XB, 2021, ADV NEUR IN, V34
[7]  
Luo XD, 2022, PR MACH LEARN RES, V172, P820
[8]   Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency [J].
Luo, Xiangde ;
Wang, Guotai ;
Liao, Wenjun ;
Chen, Jieneng ;
Song, Tao ;
Chen, Yinan ;
Zhang, Shichuan ;
Metaxas, Dimitris N. ;
Zhang, Shaoting .
MEDICAL IMAGE ANALYSIS, 2022, 80
[9]   Semi-Supervised Semantic Segmentation with Cross-Consistency Training [J].
Ouali, Yassine ;
Hudelot, Celine ;
Tami, Myriam .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :12671-12681
[10]   Deep Co-Training for Semi-Supervised Image Recognition [J].
Qiao, Siyuan ;
Shen, Wei ;
Zhang, Zhishuai ;
Wang, Bo ;
Yuille, Alan .
COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 :142-159