Extending an Economical Third-Order Inviscid Nodal-Gradient Cell-Centered Finite-Volume Method to Mixed-Element Grids

被引:0
作者
Nishikawa, Hiroaki [1 ]
Whitet, Jeffery A. [2 ]
机构
[1] Natl Inst Aerosp, Hampton, VA 23666 USA
[2] NASA, Computat AeroSci Branch, Langley Res Ctr, Hampton, VA 23681 USA
来源
AIAA AVIATION FORUM AND ASCEND 2024 | 2024年
关键词
SCHEME; RECONSTRUCTION; DISCRETIZATION;
D O I
10.2514/6.2024-3953
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, we extend an economical third-order nodal-gradient cell-centered finite-volume method, originally developed for tetrahedral grids, to mixed-element grids. It is shown that the efficient quadratic interpolation formula essential to eliminating second derivatives from a third-order accurate discretization can be easily extended to an arbitrary cell type. For the surface flux integration, we consider a split-face approach, where a quadrilateral face is split into two triangles, and the third-order method for tetrahedra is directly applied. Also, we derive a second-derivative-free, high-order, volume quadrature formula for an arbitrary cell. Numerical results are presented for accuracy verification and applications with three-dimensional nontetrahedral grids.
引用
收藏
页数:17
相关论文
共 21 条
[1]  
11VULCAN-CFD, about us
[2]  
Barth T., 1990, 28th Aerospace Sciences Meeting, page, P13
[3]  
Burg C.O.E., 2005, 17 AIAA COMP FLUID D, DOI DOI 10.2514/6.2005-4999
[4]   Unstructured-Grid Third-Order Finite Volume Discretization Using a Multistep Quadratic Data-Reconstruction Method [J].
Caraeni, D. ;
Hill, D. C. .
AIAA JOURNAL, 2010, 48 (04) :808-817
[5]  
Charest M. R. J., 2012, P 7 INT C COMP FLUID
[6]   Quadratic-reconstruction finite volume scheme for compressible flows on unstructured adaptive grids [J].
Delanaye, M ;
Essers, JA .
AIAA JOURNAL, 1997, 35 (04) :631-639
[7]   A low-diffusion flux-splitting scheme for Navier-Stokes calculations [J].
Edwards, JR .
COMPUTERS & FLUIDS, 1997, 26 (06) :635-659
[8]   Efficient Implementation of High Order Reconstruction in Finite Volume Methods [J].
Haider, Florian ;
Brenner, Pierre ;
Courbet, Bernard ;
Croisille, Jean-Pierre .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :553-+
[9]   Higher-order unstructured finite volume RANS solution of turbulent compressible flows [J].
Jalali, Alireza ;
Ollvier-Gooch, Carl .
COMPUTERS & FLUIDS, 2017, 143 :32-47
[10]  
Krist S.L., 1998, CFL3D User's Manual