A proteomic survival predictor for COVID-19 patients in intensive care

被引:31
作者
Demichev, Vadim [1 ,2 ,3 ,4 ]
Tober-Lau, Pinkus [5 ]
Nazarenko, Tatiana [6 ,7 ]
Lemke, Oliver [1 ]
Aulakh, Simran Kaur
Whitwell, Harry J. [8 ,9 ,10 ,11 ]
Roehl, Annika [1 ]
Freiwald, Anja [1 ]
Mittermaier, Mirja [5 ,12 ]
Szyrwiel, Lukasz [2 ]
Ludwig, Daniela [1 ]
Correia-Melo, Clara [2 ]
Lippert, Lena J. [1 ]
Helbig, Elisa T. [5 ]
Stubbemann, Paula [5 ]
Olk, Nadine [5 ]
Thibeault, Charlotte [5 ]
Gruenning, Nana-Maria
Blyuss, Oleg [13 ,14 ,15 ]
Vernardis, Spyros
White, Matthew
Messner, Christoph B. [2 ]
Joannidis, Michael [16 ]
Sonnweber, Thomas [17 ]
Klein, Sebastian J. [16 ]
Pizzini, Alex [17 ]
Wohlfarter, Yvonne [18 ]
Sahanic, Sabina [17 ]
Hilbe, Richard [17 ]
Schaefer, Benedikt [19 ]
Wagner, Sonja [19 ]
Machleidt, Felix [5 ]
Garcia, Carmen [5 ]
Ruwwe-Gloensenkamp, Christoph [5 ]
Lingscheid, Tilman [5 ]
de Jarcy, Laure Bosquillon [5 ]
Stegemann, Miriam S. [5 ]
Pfeiffer, Moritz [5 ]
Juergens, Linda [5 ]
Denker, Sophy [20 ]
Zickler, Daniel [21 ]
Spies, Claudia [22 ]
Edel, Andreas [22 ]
Mueller, Nils B. [21 ]
Enghard, Philipp [21 ]
Zelezniak, Aleksej [2 ,23 ]
Bellmann-Weiler, Rosa
Weiss, Gunnter [17 ]
Campbell, Archie [24 ,25 ]
Hayward, Caroline [26 ]
机构
[1] Charite Univ Med Berlin, Dept Biochem, Berlin, Germany
[2] Francis Crick Inst, Mol Biol Metab Lab, London, England
[3] Univ Cambridge, Dept Biochem, Cambridge Ctr Prote, Cambridge, England
[4] Cambridge Ctr Prote, Cambridge, England
[5] Charite Univ Med Berlin, Dept Infect Dis & Resp Med, Berlin, Germany
[6] UCL, Dept Math, London, England
[7] UCL, EGA Inst Womens Hlth, Dept Womens Canc, London, England
[8] Imperial Coll London, Natl Phenome Ctr, London, England
[9] Imperial Coll London, Imperial Clin Phenotyping Ctr, Dept Metab Digest & Reprod, London, England
[10] Lobachevsky Univ, Lab Syst Med Hlth Ageing, Nizhnii Novgorod, Russia
[11] Imperial Coll London, Dept Metab Digest & Reproduct, Div Syst Med, Sect Bioanalyt Chem, London, England
[12] Berlin Inst Hlth, Berlin, Germany
[13] Lobachevsky Univ, Dept Appl Math, Nizhnii Novgorod, Russia
[14] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield, England
[15] Sechenov First Moscow State Med Univ, Dept Paediat & Paediat Infect Dis, Moscow, Russia
[16] Med Univ Innsbruck, Dept Internal Med, Div Intens Care & Emergency Med, Innsbruck, Austria
[17] Med Univ Innsbruck, Dept Internal Med 2, Innsbruck, Austria
[18] Med Univ Innsbruck, Inst Human Genet, Innsbruck, Austria
[19] Med Univ Innsbruck, Dept Internal Med 1, Christian Doppler Lab Iron & Phosphate Biol, Innsbruck, Austria
[20] Charite Univ Med Berlin, Med Dept Hematol Oncol & Tumor Immunol, Virchow Campus & Mol Krebsforsch Zentrum, Berlin, Germany
[21] Charite Univ Med Berlin, Dept Nephrol & Internal Intens Care Med, Berlin, Germany
[22] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care, Berlin, Germany
[23] Chalmers Univ Technol, Dept Biol & Biol Engn, Gothenburg, Sweden
[24] Univ Edinburgh, Inst Genet & Canc, Ctr Genom & Expt Med, Edinburgh, Scotland
[25] Univ Edinburgh, Usher Inst, Edinburgh, Scotland
[26] Univ Edinburgh, Inst Genet & Canc, MRC Human Genet Unit, Edinburgh, Scotland
[27] Sechenov First Moscow State Med Univ, Ctr Anal Complex Syst, Moscow, Russia
[28] German Ctr Lung Res, Berlin, Germany
[29] Bernhard Nocht Inst Trop Med, Dept Trop Med, Hamburg, Germany
[30] Univ Med Ctr Hamburg Eppendorf, Dept Med, Hamburg, Germany
来源
PLOS DIGITAL HEALTH | 2022年 / 1卷 / 01期
基金
英国医学研究理事会; 英国惠康基金; 奥地利科学基金会;
关键词
CRITICALLY-ILL PATIENTS; CORONAVIRUS DISEASE 2019; PLASMA PROTEOMICS; SCORE; PATHOPHYSIOLOGY; HEALTH;
D O I
10.1371/journal.pdig.0000007
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
引用
收藏
页数:17
相关论文
共 63 条
[1]   The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management [J].
Abou-Ismail, Mouhamed Yazan ;
Diamond, Akiva ;
Kapoor, Sargam ;
Arafah, Yasmin ;
Nayak, Lalitha .
THROMBOSIS RESEARCH, 2020, 194 :101-115
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   MRMAssayDB: an integrated resource for validated targeted proteomics assays [J].
Bhowmick, Pallab ;
Mohammed, Yassene ;
Borchers, Christoph H. .
BIOINFORMATICS, 2018, 34 (20) :3566-3571
[4]   Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance [J].
Bruderer, Roland ;
Muntel, Jan ;
Muller, Sebastian ;
Bernhard, Oliver M. ;
Gandhi, Tejas ;
Cominetti, Ornella ;
Macron, Charlotte ;
Carayol, Jerome ;
Rinner, Oliver ;
Astrup, Arne ;
Saris, Wim H. M. ;
Hager, Jorg ;
Valsesia, Armand ;
Dayon, Loic ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (06) :1242-1254
[5]   Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation [J].
Chao, Julie ;
Guo, Youming ;
Chao, Lee .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2018, 2018
[6]   AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia [J].
Chassagnon, Guillaume ;
Vakalopoulou, Maria ;
Battistella, Enzo ;
Christodoulidis, Stergios ;
Trieu-Nghi Hoang-Thi ;
Dangeard, Severine ;
Deutsch, Eric ;
Andre, Fabrice ;
Guillo, Enora ;
Halm, Nara ;
El Hajj, Stefany ;
Bompard, Florian ;
Neveu, Sophie ;
Hani, Chahinez ;
Saab, Ines ;
Campredon, Alienor ;
Koulakian, Hasmik ;
Bennani, Souhail ;
Freche, Gael ;
Barat, Maxime ;
Lombard, Aurelien ;
Fournier, Laure ;
Monnier, Hippolyte ;
Grand, Teodor ;
Gregory, Jules ;
Nguyen, Yann ;
Khalil, Antoine ;
Mahdjoub, Elyas ;
Brillet, Pierre-Yves ;
Ba, Stephane Tran ;
Bousson, Valerie ;
Mekki, Ahmed ;
Carlier, Robert-Yves ;
Revel, Marie-Pierre ;
Paragios, Nikos .
MEDICAL IMAGE ANALYSIS, 2021, 67
[7]   COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis [J].
Chua, Robert Lorenz ;
Lukassen, Soeren ;
Trump, Saskia ;
Hennig, Bianca P. ;
Wendisch, Daniel ;
Pott, Fabian ;
Debnath, Olivia ;
Thuermann, Loreen ;
Kurth, Florian ;
Voelker, Maria Theresa ;
Kazmierski, Julia ;
Timmermann, Bernd ;
Twardziok, Sven ;
Schneider, Stefan ;
Machleidt, Felix ;
Mueller-Redetzky, Holger ;
Maier, Melanie ;
Krannich, Alexander ;
Schmidt, Sein ;
Balzer, Felix ;
Liebig, Johannes ;
Loske, Jennifer ;
Suttorp, Norbert ;
Eils, Juergen ;
Ishaque, Naveed ;
Liebert, Uwe Gerd ;
von Kalle, Christof ;
Hocke, Andreas ;
Witzenrath, Martin ;
Goffinet, Christine ;
Drosten, Christian ;
Laudi, Sven ;
Lehmann, Irina ;
Conrad, Christian ;
Sander, Leif-Erik ;
Eils, Roland .
NATURE BIOTECHNOLOGY, 2020, 38 (08) :970-+
[8]   Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study [J].
Clift, Ash K. ;
Coupland, Carol A. C. ;
Keogh, Ruth H. ;
Diaz-Ordaz, Karla ;
Williamson, Elizabeth ;
Harrison, Ewen M. ;
Hayward, Andrew ;
Hemingway, Harry ;
Horby, Peter ;
Mehta, Nisha ;
Benger, Jonathan ;
Khunti, Kamlesh ;
Spiegelhalter, David ;
Sheikh, Aziz ;
Valabhji, Jonathan ;
Lyons, Ronan A. ;
Robson, John ;
Semple, Malcolm G. ;
Kee, Frank ;
Johnson, Peter ;
Jebb, Susan ;
Williams, Tony ;
Hippisley-Cox, Julia .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 371
[9]   A lesson from a saboteur: High-MW kininogen impact in coronavirus-induced disease 2019 [J].
Colarusso, Chiara ;
Terlizzi, Michela ;
Pinto, Aldo ;
Sorrentino, Rosalinda .
BRITISH JOURNAL OF PHARMACOLOGY, 2020, 177 (21) :4866-4872
[10]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z]