X-Ray-Guided Magnetic Fields for Wireless Control of Untethered Magnetic Robots in Cerebral Vascular Phantoms

被引:0
作者
Ligtenberg, Leendert-Jan W. [1 ,2 ,3 ]
de Boer, Marcus C. J. [1 ,2 ]
Mulder, Iris [1 ,2 ]
Lomme, Roger [3 ]
Wasserberg, Dorothee [4 ,5 ]
Rot, Emily A. M. Klein [4 ]
Ben Ami, Doron [6 ]
Sadeh, Udi [6 ]
Liefers, H. Remco [2 ]
Shoseyov, Oded [6 ,7 ]
Jonkheijm, Pascal [4 ,5 ]
Warle, Michiel [3 ]
Khalil, Islam S. M. [1 ,2 ]
机构
[1] Univ Twente, RAM Robot & Mechatron, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Tech Med Ctr, NL-7500 AE Enschede, Netherlands
[3] Radboud Univ Nijmegen Med Ctr, NL-6525 GA Nijmegen, Netherlands
[4] LipoCoat BV, NL-7521 AG Enschede, Netherlands
[5] Univ Twente, Lab Biointerface Chem, Tech Med Ctr, NL-7500 AE Enschede, Netherlands
[6] Triticum Med, IL-4726389 Ramat Hasharon, Israel
[7] Hebrew Univ Jerusalem, IL-76100 Rehovot, Israel
来源
2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS 2024 | 2024年
关键词
NAVIGATION;
D O I
10.1109/IROS58592.2024.10802534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper explores the application of X-ray-guided magnetic fields for the wireless control of untethered magnetic robots (UMRs) within cerebral vascular phantoms. With a focus on addressing challenges associated with strokes and brain aneurysms, the study aims to enhance neurosurgical procedures by improving precision and maneuverability. Experimental findings showcase the feasibility and effectiveness of this innovative approach in navigating UMRs, characterized by a screw-shaped body and a ferromagnetic core, through complex vascular structures. Cone-beam computed tomography is employed to determine the tomography and provide various reference trajectories for the UMR inside the cerebral vascular phantom. Our motion control experiments show that the X-ray-guided magnetic fields enable the UMR to move along any intended path with an average success rate of 89%, allowing the UMR to move between the left and right common carotid artery to the left and right internal and external carotid artery.
引用
收藏
页码:4624 / 4629
页数:6
相关论文
共 13 条
[1]   Dexterous helical magnetic robot for improved endovascular access [J].
Dreyfus, R. ;
Boehler, Q. ;
Lyttle, S. ;
Gruber, P. ;
Lussi, J. ;
Chautems, C. ;
Gervasoni, S. ;
Berberat, J. ;
Seibold, D. ;
Ochsenbein-Kolble, N. ;
Reinehr, M. ;
Weisskopf, M. ;
Remonda, L. ;
Nelson, B. J. .
SCIENCE ROBOTICS, 2024, 9 (87)
[2]   Wireless Control of Magnetic Helical Microrobots using a Rotating-Permanent-Magnet Manipulator [J].
Fountain, Thomas W. R. ;
Kailat, Prem V. ;
Abbott, Jake J. .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :576-581
[3]  
Hong A, 2015, IEEE INT CONF ROBOT, P618, DOI 10.1109/ICRA.2015.7139243
[4]   Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow [J].
Jin, Dongdong ;
Wang, Qinglong ;
Chan, Kai Fung ;
Xia, Neng ;
Yang, Haojin ;
Wang, Qianqian ;
Yu, Simon Chun Ho ;
Zhang, Li .
SCIENCE ADVANCES, 2023, 9 (19)
[5]   In Vitro Design Investigation of a Rotating Helical Magnetic Swimmer for Combined 3-D Navigation and Blood Clot Removal [J].
Leclerc, Julien ;
Zhao, Haoran ;
Bao, Daniel ;
Becker, Aaron T. .
IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (03) :975-982
[6]  
Ligtenberg L.-J.W., 2024, Commun. Eng., V3
[7]   Helical Propulsion in Low-Re Numbers with Near-Zero Angle of Attack [J].
Ligtenberg, Leendert-Jan W. ;
Ekkelkamp, Ilse A. A. ;
Halfwerk, Frank R. ;
Goulas, Constantinos ;
Arens, Jutta ;
Warle, Michiel ;
Khalil, Islam S. M. .
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, :2647-2652
[8]   Magnetic soft microfiberbots for robotic embolization [J].
Liu, Xurui ;
Wang, Liu ;
Xiang, Yuanzhuo ;
Liao, Fan ;
Li, Na ;
Li, Jiyu ;
Wang, Jiaxin ;
Wu, Qingyang ;
Zhou, Cheng ;
Yang, Youzhou ;
Kou, Yuanshi ;
Yang, Yueying ;
Tang, Hanchuan ;
Zhou, Ning ;
Wan, Chidan ;
Yin, Zhouping ;
Yang, Guang-Zhong ;
Tao, Guangming ;
Zang, Jianfeng .
SCIENCE ROBOTICS, 2024, 9 (87)
[9]   Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system [J].
Mathieu, JB ;
Beaudoin, G ;
Martel, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (02) :292-299
[10]   Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella [J].
Servant, Ania ;
Qiu, Famin ;
Mazza, Mariarosa ;
Kostarelos, Kostas ;
Nelson, Bradley J. .
ADVANCED MATERIALS, 2015, 27 (19) :2981-2988