Gradient Estimates and Liouville Theorems for a Class of Quasilinear Elliptic Equations on Complete Riemannian Manifolds

被引:0
作者
Ma, Yuanqing [1 ]
Wang, Youde [2 ,3 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510000, Peoples R China
[3] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Key Lab Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient estimate; Liouville type theorem; POSITIVE SOLUTIONS; RICCI CURVATURE; LOCAL BEHAVIOR; INEQUALITIES; SINGULARITY; STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the gradient estimates of positive solutions to the following quasilinear elliptic equation<br /> Delta(p)u + bu(q )F(ln(u + 1)) = 0<br /> defined on a complete Riemannian manifold (M, g), where p > 1 and F is a smooth function. We employ the Nash-Moser iteration technique to obtain some refined gradient estimates of the solutions to the above equation, if (M, g) satisfies Ric >= -(n-1)kappa, where n is the dimension of M and kappa is a nonnegative constant. By the obtained gradient estimates, we also derive a Liouville type theorem for the above equation under some suitable geometric and analysis conditions.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 41 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]  
Choquet-Bruhat Y., 2009, OXFORD MATH MONOGRAP
[3]   Bifurcating Solutions of the Lichnerowicz Equation [J].
Chrusciel, Piotr T. ;
Gicquaud, Romain .
ANNALES HENRI POINCARE, 2017, 18 (02) :643-679
[4]   Initial Data Sets with Ends of Cylindrical Type: I. The Lichnerowicz Equation [J].
Chrusciel, Piotr T. ;
Mazzeo, Rafe .
ANNALES HENRI POINCARE, 2015, 16 (05) :1231-1266
[5]  
Chung FRK, 1996, MATH RES LETT, V3, P793
[6]   Positive solutions of an elliptic equation with negative exponent: Stability and critical power [J].
Du, Yihong ;
Guo, Zongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (06) :2387-2414
[7]   Exact behavior around isolated singularity for semilinear elliptic equations with a log-type nonlinearity [J].
Ghergu, Marius ;
Kim, Sunghan ;
Shahgholian, Henrik .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :995-1003
[8]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[9]  
He J, 2024, Arxiv, DOI arXiv:2405.00703
[10]  
He J, 2024, MATH Z, V306, DOI 10.1007/s00209-024-03446-3