Testing quantum theory on curved spacetime with quantum networks

被引:0
作者
Borregaard, Johannes [1 ]
Pikovski, Igor [2 ,3 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
[3] Stevens Inst Technol, Dept Phys, Hoboken, NJ 07030 USA
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 02期
基金
美国国家科学基金会;
关键词
ENTANGLEMENT; ATOMS; SUPERPOSITION; CREATION; STATES; CLOCK; NODES;
D O I
10.1103/PhysRevResearch.7.023192
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum technologies present new opportunities for fundamental tests of nature. One potential application is to probe the interplay between quantum physics and general relativity-a field of physics with no empirical evidence yet. Here we show that quantum networks open a new window to test this interface. We demonstrate how photon mediated entanglement between atomic or atomlike systems can be used to probe time-dilation-induced entanglement and interference modulation. Key are nonlocal measurements between clocks in a gravitational field, which can be achieved either through direct photon interference or by using auxiliary entanglement. The resulting observable depends on the interference between different proper times, and can only be explained if both quantum theory and general relativity are taken into account. The proposed protocol enables clock interferometry on kilometer-scale separations and beyond. Our work thus shows a realistic experimental route for a first test of quantum theory on curved spacetime, opening up new scientific opportunities for quantum networks.
引用
收藏
页数:12
相关论文
共 82 条
[1]   Clock with 8 x 10-19 Systematic Uncertainty [J].
Aeppli, Alexander ;
Kim, Kyungtae ;
Warfield, William ;
Safronova, Marianna S. ;
Ye, Jun .
PHYSICAL REVIEW LETTERS, 2024, 133 (02)
[2]   Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles [J].
Anastopoulos, C. ;
Hu, B. L. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (03)
[3]   Quantum repeaters: From quantum networks to the quantum internet [J].
Azuma, Koji ;
Economou, Sophia E. ;
Elkouss, David ;
Hilaire, Paul ;
Jiang, Liang ;
Lo, Hoi-Kwong ;
Tzitrin, Ilan .
REVIEWS OF MODERN PHYSICS, 2023, 95 (04)
[4]   Assembly and coherent control of a register of nuclear spin qubits [J].
Barnes, Katrina ;
Battaglino, Peter ;
Bloom, Benjamin J. ;
Cassella, Kayleigh ;
Coxe, Robin ;
Crisosto, Nicole ;
King, Jonathan P. ;
Kondov, Stanimir S. ;
Kotru, Krish ;
Larsen, Stuart C. ;
Lauigan, Joseph ;
Lester, Brian J. ;
McDonald, Mickey ;
Megidish, Eli ;
Narayanaswami, Sandeep ;
Nishiguchi, Ciro ;
Notermans, Remy ;
Peng, Lucas S. ;
Ryou, Albert ;
Wu, Tsung-Yao ;
Yarwood, Michael .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]  
Barzel R, 2024, QUANTUM-AUSTRIA, V8
[6]   Gravitizing the quantum [J].
Berglund, Per ;
Huebsch, Tristan ;
Mattingly, David ;
Minic, Djordje .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (14)
[7]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[8]   Remote-Entanglement Protocols for Stationary Qubits with Photonic Interfaces [J].
Beukers, Hans K. C. ;
Pasini, Matteo ;
Choi, Hyeongrak ;
Englund, Dirk ;
Hanson, Ronald ;
Borregaard, Johannes .
PRX QUANTUM, 2024, 5 (01)
[9]   Reversible state transfer between light and a single trapped atom [J].
Boozer, A. D. ;
Boca, A. ;
Miller, R. ;
Northup, T. E. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[10]   Long-distance entanglement distribution using individual atoms in optical cavities [J].
Borregaard, J. ;
Komar, P. ;
Kessler, E. M. ;
Lukin, M. D. ;
Sorensen, A. S. .
PHYSICAL REVIEW A, 2015, 92 (01)