Multi-Level Feature Fusion Attention Generative Adversarial Network for Retinal Optical Coherence Tomography Image Denoising

被引:0
作者
Qian, Yiming [1 ,2 ]
Meng, Yichao [1 ,2 ]
机构
[1] Shanghai Univ, Inst Fiber Opt, Shanghai 201800, Peoples R China
[2] Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commun, Shanghai 200444, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 12期
关键词
optical coherence tomography; image denoising; deep learning; Multi-level feature fusion attention; SPECKLE REDUCTION; NOISE-REDUCTION; OCT; SUPPRESSION; SKIN;
D O I
10.3390/app15126697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Background: Optical coherence tomography (OCT) is limited by inherent speckle noise, degrading retinal microarchitecture visualization and pathological analysis. Existing denoising methods inadequately balance noise suppression and structural preservation, necessitating advanced solutions for clinical OCT reconstruction. Methods: We propose MFFA-GAN, a generative adversarial network integrating multilevel feature fusion and an efficient local attention (ELA) mechanism. It optimizes cross-feature interactions and channel-wise information flow. Evaluations on three public OCT datasets compared traditional methods and deep learning models using PSNR, SSIM, CNR, and ENL metrics. Results: MFFA-GAN achieved good performance (PSNR:30.107 dB, SSIM:0.727, CNR:3.927, ENL:529.161) on smaller datasets, outperforming benchmarks and further enhanced interpretability through pixel error maps. It preserved retinal layers and textures while suppressing noise. Ablation studies confirmed the synergy of multilevel features and ELA, improving PSNR by 1.8 dB and SSIM by 0.12 versus baselines. Conclusions: MFFA-GAN offers a reliable OCT denoising solution by harmonizing noise reduction and structural fidelity. Its hybrid attention mechanism enhances clinical image quality, aiding retinal analysis and diagnosis.
引用
收藏
页数:20
相关论文
共 42 条
[1]   Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels [J].
Aum, Jaehong ;
Kim, Ji-hyun ;
Jeong, Jichai .
APPLIED OPTICS, 2015, 54 (13) :D43-D50
[2]   Image Blind Denoising With Generative Adversarial Network Based Noise Modeling [J].
Chen, Jingwen ;
Chen, Jiawei ;
Chao, Hongyang ;
Yang, Ming .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3155-3164
[3]   Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [J].
Chen, Yanbei ;
Mancini, Massimiliano ;
Zhu, Xiatian ;
Akata, Zeynep .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) :1327-1347
[4]   Probabilistic volumetric speckle suppression in OCT using deep learning [J].
Chintada, Bhaskara Rao ;
Ruiz-Lopera, Sebastian ;
Restrepo, Rene ;
Bouma, Brett E. ;
Villiger, Martin ;
Uribe-Patarroyo, Nestor .
BIOMEDICAL OPTICS EXPRESS, 2024, 15 (08) :4453-4469
[5]   Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images [J].
Chiu, Stephanie J. ;
Izatt, Joseph A. ;
O'Connell, Rachelle V. ;
Winter, Katrina P. ;
Toth, Cynthia A. ;
Farsiu, Sina .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (01) :53-61
[6]   Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter [J].
Chong, Bo ;
Zhu, Yong-Kai .
OPTICS COMMUNICATIONS, 2013, 291 :461-469
[7]  
Daubechies I, 2022, CONSTR APPROX, V55, P127, DOI 10.1007/s00365-021-09548-z
[8]   Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation [J].
Fang, Leyuan ;
Li, Shutao ;
McNabb, Ryan P. ;
Nie, Qing ;
Kuo, Anthony N. ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) :2034-2049
[9]   Sparsity based denoising of spectral domain optical coherence tomography images [J].
Fang, Leyuan ;
Li, Shutao ;
Nie, Qing ;
Izatt, Joseph A. ;
Toth, Cynthia A. ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (05) :927-942
[10]   Dropout vs. batch normalization: an empirical study of their impact to deep learning [J].
Garbin, Christian ;
Zhu, Xingquan ;
Marques, Oge .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (19-20) :12777-12815